A Multi-Strategy Improved Red-Billed Blue Magpie Optimizer for Global Optimization.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Mingjun Ye, Xiong Wang, Zihao Guo, Bin Hu, Li Wang
{"title":"A Multi-Strategy Improved Red-Billed Blue Magpie Optimizer for Global Optimization.","authors":"Mingjun Ye, Xiong Wang, Zihao Guo, Bin Hu, Li Wang","doi":"10.3390/biomimetics10090557","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance the convergence efficiency and solution precision of the Red-billed Blue Magpie Optimizer (RBMO), this study proposes a Multi-Strategy Enhanced Red-billed Blue Magpie Optimizer (MRBMO). The principal methodological innovations encompass three aspects: (1) Development of a novel dynamic boundary constraint handling mechanism that strengthens algorithmic exploration capabilities through adaptive regression strategy adjustment for boundary-transgressing particles; (2) Incorporation of an elite guidance strategy during the predation phase, establishing a guided search framework that integrates historical individual optimal information while employing a Lévy Flight strategy to modulate search step sizes, thereby achieving effective balance between global exploration and local exploitation capabilities; (3) Comprehensive experimental evaluations conducted on the CEC2017 and CEC2022 benchmark test suites demonstrate that MRBMO significantly outperforms classical enhanced algorithms and exhibits competitive performance against state-of-the-art optimizers across 41 standardized test functions. The practical efficacy of the algorithm is further validated through successful applications to four classical engineering design problems, confirming its robust problem-solving capabilities.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090557","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the convergence efficiency and solution precision of the Red-billed Blue Magpie Optimizer (RBMO), this study proposes a Multi-Strategy Enhanced Red-billed Blue Magpie Optimizer (MRBMO). The principal methodological innovations encompass three aspects: (1) Development of a novel dynamic boundary constraint handling mechanism that strengthens algorithmic exploration capabilities through adaptive regression strategy adjustment for boundary-transgressing particles; (2) Incorporation of an elite guidance strategy during the predation phase, establishing a guided search framework that integrates historical individual optimal information while employing a Lévy Flight strategy to modulate search step sizes, thereby achieving effective balance between global exploration and local exploitation capabilities; (3) Comprehensive experimental evaluations conducted on the CEC2017 and CEC2022 benchmark test suites demonstrate that MRBMO significantly outperforms classical enhanced algorithms and exhibits competitive performance against state-of-the-art optimizers across 41 standardized test functions. The practical efficacy of the algorithm is further validated through successful applications to four classical engineering design problems, confirming its robust problem-solving capabilities.

一种多策略改进的红嘴蓝喜鹊全局优化器。
为了提高红嘴蓝喜鹊优化器(RBMO)的收敛效率和求解精度,本文提出了一种多策略增强型红嘴蓝喜鹊优化器(MRBMO)。主要的方法创新包括三个方面:(1)开发了一种新的动态边界约束处理机制,通过对越界粒子的自适应回归策略调整来增强算法的探索能力;(2)在捕食阶段引入精英制导策略,建立整合历史个体最优信息的制导搜索框架,同时利用lsamvy Flight策略调节搜索步长,实现全局搜索和局部开发能力的有效平衡;(3)对CEC2017和CEC2022基准测试套件进行的综合实验评估表明,在41个标准化测试功能中,MRBMO显著优于经典增强算法,并与最先进的优化器表现出竞争力。通过对四个经典工程设计问题的成功应用,进一步验证了算法的实际有效性,验证了算法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信