Motion Intention Prediction for Lumbar Exoskeletons Based on Attention-Enhanced sEMG Inference.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Mingming Wang, Linsen Xu, Zhihuan Wang, Qi Zhu, Tao Wu
{"title":"Motion Intention Prediction for Lumbar Exoskeletons Based on Attention-Enhanced sEMG Inference.","authors":"Mingming Wang, Linsen Xu, Zhihuan Wang, Qi Zhu, Tao Wu","doi":"10.3390/biomimetics10090556","DOIUrl":null,"url":null,"abstract":"<p><p>Exoskeleton robots function as augmentation systems that establish mechanical couplings with the human body, substantially enhancing the wearer's biomechanical capabilities through assistive torques. We introduce a lumbar spine-assisted exoskeleton design based on Variable-Stiffness Pneumatic Artificial Muscles (VSPAM) and develop a dynamic adaptation mechanism bridging the pneumatic drive module with human kinematic intent to facilitate human-robot cooperative control. For kinematic intent resolution, we propose a multimodal fusion architecture integrating the VGG16 convolutional network with Long Short-Term Memory (LSTM) networks. By incorporating self-attention mechanisms, we construct a fine-grained relational inference module that leverages multi-head attention weight matrices to capture global spatio-temporal feature dependencies, overcoming local feature constraints inherent in traditional algorithms. We further employ cross-attention mechanisms to achieve deep fusion of visual and kinematic features, establishing aligned intermodal correspondence to mitigate unimodal perception limitations. Experimental validation demonstrates 96.1% ± 1.2% motion classification accuracy, offering a novel technical solution for rehabilitation robotics and industrial assistance.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090556","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exoskeleton robots function as augmentation systems that establish mechanical couplings with the human body, substantially enhancing the wearer's biomechanical capabilities through assistive torques. We introduce a lumbar spine-assisted exoskeleton design based on Variable-Stiffness Pneumatic Artificial Muscles (VSPAM) and develop a dynamic adaptation mechanism bridging the pneumatic drive module with human kinematic intent to facilitate human-robot cooperative control. For kinematic intent resolution, we propose a multimodal fusion architecture integrating the VGG16 convolutional network with Long Short-Term Memory (LSTM) networks. By incorporating self-attention mechanisms, we construct a fine-grained relational inference module that leverages multi-head attention weight matrices to capture global spatio-temporal feature dependencies, overcoming local feature constraints inherent in traditional algorithms. We further employ cross-attention mechanisms to achieve deep fusion of visual and kinematic features, establishing aligned intermodal correspondence to mitigate unimodal perception limitations. Experimental validation demonstrates 96.1% ± 1.2% motion classification accuracy, offering a novel technical solution for rehabilitation robotics and industrial assistance.

Abstract Image

Abstract Image

Abstract Image

基于注意增强肌电图推断的腰椎外骨骼运动意图预测。
外骨骼机器人作为与人体建立机械耦合的增强系统,通过辅助扭矩大大增强穿戴者的生物力学能力。介绍了一种基于变刚度气动人造肌肉(VSPAM)的腰椎辅助外骨骼设计,并开发了一种连接气动驱动模块与人体运动意图的动态自适应机制,以实现人机协同控制。对于运动意图解析,我们提出了一种将VGG16卷积网络与长短期记忆(LSTM)网络相结合的多模态融合架构。通过引入自注意机制,我们构建了一个细粒度的关系推理模块,该模块利用多头注意权重矩阵来捕获全局时空特征依赖关系,克服了传统算法固有的局部特征约束。我们进一步采用交叉注意机制来实现视觉和运动特征的深度融合,建立对齐的多式联运对应关系,以减轻单式感知限制。实验验证表明,该方法的运动分类准确率为96.1%±1.2%,为康复机器人和工业辅助提供了新的技术解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信