{"title":"Towards Biologically-Inspired Visual SLAM in Dynamic Environments: IPL-SLAM with Instance Segmentation and Point-Line Feature Fusion.","authors":"Jian Liu, Donghao Yao, Na Liu, Ye Yuan","doi":"10.3390/biomimetics10090558","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneous Localization and Mapping (SLAM) is a fundamental technique in mobile robotics, enabling autonomous navigation and environmental reconstruction. However, dynamic elements in real-world scenes-such as walking pedestrians, moving vehicles, and swinging doors-often degrade SLAM performance by introducing unreliable features that cause localization errors. In this paper, we define dynamic regions as areas in the scene containing moving objects, and dynamic features as the visual features extracted from these regions that may adversely affect localization accuracy. Inspired by biological perception strategies that integrate semantic awareness and geometric cues, we propose Instance-level Point-Line SLAM (IPL-SLAM), a robust visual SLAM framework for dynamic environments. The system employs YOLOv8-based instance segmentation to detect potential dynamic regions and construct semantic priors, while simultaneously extracting point and line features using Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features), collectively known as ORB, and Line Segment Detector (LSD) algorithms. Motion consistency checks and angular deviation analysis are applied to filter dynamic features, and pose optimization is conducted using an adaptive-weight error function. A static semantic point cloud map is further constructed to enhance scene understanding. Experimental results on the TUM RGB-D dataset demonstrate that IPL-SLAM significantly outperforms existing dynamic SLAM systems-including DS-SLAM and ORB-SLAM2-in terms of trajectory accuracy and robustness in complex indoor environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090558","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneous Localization and Mapping (SLAM) is a fundamental technique in mobile robotics, enabling autonomous navigation and environmental reconstruction. However, dynamic elements in real-world scenes-such as walking pedestrians, moving vehicles, and swinging doors-often degrade SLAM performance by introducing unreliable features that cause localization errors. In this paper, we define dynamic regions as areas in the scene containing moving objects, and dynamic features as the visual features extracted from these regions that may adversely affect localization accuracy. Inspired by biological perception strategies that integrate semantic awareness and geometric cues, we propose Instance-level Point-Line SLAM (IPL-SLAM), a robust visual SLAM framework for dynamic environments. The system employs YOLOv8-based instance segmentation to detect potential dynamic regions and construct semantic priors, while simultaneously extracting point and line features using Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features), collectively known as ORB, and Line Segment Detector (LSD) algorithms. Motion consistency checks and angular deviation analysis are applied to filter dynamic features, and pose optimization is conducted using an adaptive-weight error function. A static semantic point cloud map is further constructed to enhance scene understanding. Experimental results on the TUM RGB-D dataset demonstrate that IPL-SLAM significantly outperforms existing dynamic SLAM systems-including DS-SLAM and ORB-SLAM2-in terms of trajectory accuracy and robustness in complex indoor environments.