Kristina Wanieck, M Alex Smith, Elizabeth Porter, Jindong Zhang, Dave Dowhaniuk, Andria Jones, Dan Gillis, Mark Lipton, Marsha Hinds Myrie, Dawn Bazely, Marjan Eggermont, Mindi Summers, Christina Smylitopoulos, Claudia I Rivera Cárdenas, Emily Wolf, Peggy Karpouzou, Nikoleta Zampaki, Heather Clitheroe, Adam Davies, Anibal H Castillo, Michael Helms, Karina Benessaiah, Shoshanah Jacobs
{"title":"A Call for Bio-Inspired Technologies: Promises and Challenges for Ecosystem Service Replacement.","authors":"Kristina Wanieck, M Alex Smith, Elizabeth Porter, Jindong Zhang, Dave Dowhaniuk, Andria Jones, Dan Gillis, Mark Lipton, Marsha Hinds Myrie, Dawn Bazely, Marjan Eggermont, Mindi Summers, Christina Smylitopoulos, Claudia I Rivera Cárdenas, Emily Wolf, Peggy Karpouzou, Nikoleta Zampaki, Heather Clitheroe, Adam Davies, Anibal H Castillo, Michael Helms, Karina Benessaiah, Shoshanah Jacobs","doi":"10.3390/biomimetics10090578","DOIUrl":null,"url":null,"abstract":"<p><p>Ecosystem services are crucial for animals, plants, the planet, and human well-being. Decreasing biodiversity and environmental destruction of ecosystems will have severe consequences. Designing technologies that could support, enhance, or even replace ecosystem services is a complex task that the Manufactured Ecosystems Project team considers to be only achievable with transdisciplinarity, as it unlocks new directions for designing research and development systems. One of these directions in the project is bio-inspiration, learning from natural systems as the foundation for manufacturing ecosystem services. Using soil formation as a case study, text-mining of existing scientific literature reveals a critical gap: fewer than 1% of studies in biomimetics address soil formation technological replacement, despite the rapid global decline in natural soil formation processes. The team sketches scenarios of ecosystem collapse, identifying how bio-inspired solutions for equitable and sustainable innovation can contribute to climate adaptation. The short communication opens the discussion for collaboration and aims to initiate future research.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090578","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ecosystem services are crucial for animals, plants, the planet, and human well-being. Decreasing biodiversity and environmental destruction of ecosystems will have severe consequences. Designing technologies that could support, enhance, or even replace ecosystem services is a complex task that the Manufactured Ecosystems Project team considers to be only achievable with transdisciplinarity, as it unlocks new directions for designing research and development systems. One of these directions in the project is bio-inspiration, learning from natural systems as the foundation for manufacturing ecosystem services. Using soil formation as a case study, text-mining of existing scientific literature reveals a critical gap: fewer than 1% of studies in biomimetics address soil formation technological replacement, despite the rapid global decline in natural soil formation processes. The team sketches scenarios of ecosystem collapse, identifying how bio-inspired solutions for equitable and sustainable innovation can contribute to climate adaptation. The short communication opens the discussion for collaboration and aims to initiate future research.