Reorganization of DNA loops by competition between condensin I and a linker histone.

IF 3.1 3区 生物学 Q2 BIOPHYSICS
Tetsuya Yamamoto, Keishi Shintomi, Tatsuya Hirano
{"title":"Reorganization of DNA loops by competition between condensin I and a linker histone.","authors":"Tetsuya Yamamoto, Keishi Shintomi, Tatsuya Hirano","doi":"10.1016/j.bpj.2025.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>Condensin-mediated loop extrusion is thought to be one of the primary mechanisms underlying mitotic chromosome assembly. However, how this process is affected by other chromosomal proteins, such as histones, is not well understood. Our previous study showed that in Xenopus egg extracts codepleted of topoisomerase IIα and the histone chaperone Asf1, a highly characteristic chromatin structure called the \"sparkler\" is assembled. The sparkler is a compact structure assembled on nucleosome-free, entangled DNA in which multiple protrusions radiate from a core. Interestingly, condensin I is concentrated at the tips of the protrusions, whereas the linker histone H1.8 is enriched in the remaining regions of the structure. To understand the biophysical mechanisms underlying sparkler assembly, we construct a model predicting that DNA loops extruded from the entangled DNA undergo phase separation into two domains: loops enriched in condensin I remain as protrusions, whereas those enriched in H1.8 are reeled into the central region. We propose that H1.8 competes with condensin I for DNA binding, thereby reorganizing DNA loops formed by condensin I under this specialized condition.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.09.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Condensin-mediated loop extrusion is thought to be one of the primary mechanisms underlying mitotic chromosome assembly. However, how this process is affected by other chromosomal proteins, such as histones, is not well understood. Our previous study showed that in Xenopus egg extracts codepleted of topoisomerase IIα and the histone chaperone Asf1, a highly characteristic chromatin structure called the "sparkler" is assembled. The sparkler is a compact structure assembled on nucleosome-free, entangled DNA in which multiple protrusions radiate from a core. Interestingly, condensin I is concentrated at the tips of the protrusions, whereas the linker histone H1.8 is enriched in the remaining regions of the structure. To understand the biophysical mechanisms underlying sparkler assembly, we construct a model predicting that DNA loops extruded from the entangled DNA undergo phase separation into two domains: loops enriched in condensin I remain as protrusions, whereas those enriched in H1.8 are reeled into the central region. We propose that H1.8 competes with condensin I for DNA binding, thereby reorganizing DNA loops formed by condensin I under this specialized condition.

通过凝聚蛋白I和连接组蛋白之间的竞争重组DNA环。
凝缩蛋白介导的环挤压被认为是有丝分裂染色体组装的主要机制之一。然而,这一过程如何受到其他染色体蛋白(如组蛋白)的影响尚不清楚。我们之前的研究表明,在爪蟾卵提取物中,拓扑异构酶i α和组蛋白伴侣Asf1共耗尽,一个高度特征的染色质结构被称为“sparkler”。这种火花是一种紧凑的结构,由无核小体、纠缠在一起的DNA组成,其中有多个突起从核心辐射出来。有趣的是,凝缩蛋白I集中在突起的尖端,而连接蛋白H1.8则富集在结构的其余区域。为了理解火花组装背后的生物物理机制,我们构建了一个模型,预测从纠缠DNA中挤出的DNA环会在两个结构域中进行相分离:富含凝缩蛋白I的环仍然是突起,而富含H1.8的环则卷曲到中心区域。我们提出H1.8与凝聚蛋白I竞争DNA结合,从而在这种特殊条件下重组由凝聚蛋白I形成的DNA环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信