Biomimetic Dual-Sensing Bone Scaffolds: Characterization and In Vitro Evaluation Under Dynamic Culturing Conditions.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Damion T Dixon, Erika N Landree, Cheryl T Gomillion
{"title":"Biomimetic Dual-Sensing Bone Scaffolds: Characterization and In Vitro Evaluation Under Dynamic Culturing Conditions.","authors":"Damion T Dixon, Erika N Landree, Cheryl T Gomillion","doi":"10.3390/biomimetics10090598","DOIUrl":null,"url":null,"abstract":"<p><p>The regeneration of large segmental bone defects remains a significant challenge. While electrical stimulation has demonstrated the potential to accelerate bone healing, clinical translation has been hindered by the lack of safe, localized delivery methods. In this study, we present a novel strategy combining piezoelectric and electrically conductive polymers with allograft demineralized bones to create stimuli-responsive, biologically relevant scaffolds via pneumatic 3D printing. These scaffolds exhibit enhanced piezoelectric potential and tunable electrical properties, enabling both electrical and mechanical stimulation of cells (without external stimulators). Under dynamic culturing conditions (i.e., ultrasound stimulation), human bone marrow-derived mesenchymal stromal cells cultured on these scaffolds displayed significantly elevated osteogenic protein expression (i.e., alkaline phosphatase and osteocalcin) and mineralization (confirmed via xylenol orange mineral staining) after two weeks. This work introduces a bioinspired, printable ink in conjunction with a simple fabrication approach for creating dual-responsive scaffolds with high potential for functional bone tissue regeneration.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090598","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The regeneration of large segmental bone defects remains a significant challenge. While electrical stimulation has demonstrated the potential to accelerate bone healing, clinical translation has been hindered by the lack of safe, localized delivery methods. In this study, we present a novel strategy combining piezoelectric and electrically conductive polymers with allograft demineralized bones to create stimuli-responsive, biologically relevant scaffolds via pneumatic 3D printing. These scaffolds exhibit enhanced piezoelectric potential and tunable electrical properties, enabling both electrical and mechanical stimulation of cells (without external stimulators). Under dynamic culturing conditions (i.e., ultrasound stimulation), human bone marrow-derived mesenchymal stromal cells cultured on these scaffolds displayed significantly elevated osteogenic protein expression (i.e., alkaline phosphatase and osteocalcin) and mineralization (confirmed via xylenol orange mineral staining) after two weeks. This work introduces a bioinspired, printable ink in conjunction with a simple fabrication approach for creating dual-responsive scaffolds with high potential for functional bone tissue regeneration.

仿生双传感骨支架:动态培养条件下的表征和体外评价。
大节段性骨缺损的再生仍然是一个重大的挑战。虽然电刺激已经证明了加速骨愈合的潜力,但由于缺乏安全的局部传递方法,临床转化一直受到阻碍。在这项研究中,我们提出了一种新的策略,将压电和导电聚合物与同种异体移植物脱矿骨结合起来,通过气动3D打印创建刺激响应的、生物相关的支架。这些支架具有增强的压电电位和可调的电性能,可以对细胞进行电刺激和机械刺激(无需外部刺激)。在动态培养条件下(即超声刺激),在这些支架上培养的人骨髓间充质间质细胞在两周后显示出明显升高的成骨蛋白表达(即碱性磷酸酶和骨钙素)和矿化(通过二甲酚橙矿物染色证实)。这项工作介绍了一种生物灵感,可打印墨水与一种简单的制造方法相结合,用于创建具有高潜力的功能性骨组织再生的双响应支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信