An Innovative Retrieval-Augmented Generation Framework for Stage-Specific Knowledge Translation in Biomimicry Design.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Hsueh-Kuan Chen, Hung-Hsiang Wang
{"title":"An Innovative Retrieval-Augmented Generation Framework for Stage-Specific Knowledge Translation in Biomimicry Design.","authors":"Hsueh-Kuan Chen, Hung-Hsiang Wang","doi":"10.3390/biomimetics10090626","DOIUrl":null,"url":null,"abstract":"<p><p>Converting biological strategies into practical design principles during the Discover-Abstract phase of the Biomimicry Design Spiral (BSD) presents a considerable obstacle, particularly for designers lacking a biological background. This research introduces a Retrieval-Augmented Generation (RAG) framework that combines a specialized AskNature database of 2106 documents with a locally executed Llama 3.1 large language model (LLM) to fill this void. The innovation of this study lies in integrating the BDS with a stage-specific RAG-LLM framework. Unlike BioTRIZ or SAPPhIRE, which require specialized expertise, our approach provides designers with semantically precise and biologically grounded strategies that can be directly translated into practical design principles. A quasi-experimental study with 30 industrial design students assessed three setups-LLM-only, RAG-Small, and RAG-Large-throughout six biomimicry design stages. Performance was assessed via expert evaluations of text and design concept quality, along with a review of retrieval diversity. Findings indicate that RAG-Large consistently yielded superior text quality in stages with high cognitive demands. It also retrieved a more varied array of high-specificity biological ideas and facilitated more coherent incorporation of functional, aesthetic, and semantic aspects in design results. This framework diminishes cognitive burden, boosts the relevance and originality of inspirations, and provides a reproducible, stage-specific AI assistance model for closing the knowledge translation gap in biomimicry design, though its current validation is limited to a small sample and a single task domain.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090626","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Converting biological strategies into practical design principles during the Discover-Abstract phase of the Biomimicry Design Spiral (BSD) presents a considerable obstacle, particularly for designers lacking a biological background. This research introduces a Retrieval-Augmented Generation (RAG) framework that combines a specialized AskNature database of 2106 documents with a locally executed Llama 3.1 large language model (LLM) to fill this void. The innovation of this study lies in integrating the BDS with a stage-specific RAG-LLM framework. Unlike BioTRIZ or SAPPhIRE, which require specialized expertise, our approach provides designers with semantically precise and biologically grounded strategies that can be directly translated into practical design principles. A quasi-experimental study with 30 industrial design students assessed three setups-LLM-only, RAG-Small, and RAG-Large-throughout six biomimicry design stages. Performance was assessed via expert evaluations of text and design concept quality, along with a review of retrieval diversity. Findings indicate that RAG-Large consistently yielded superior text quality in stages with high cognitive demands. It also retrieved a more varied array of high-specificity biological ideas and facilitated more coherent incorporation of functional, aesthetic, and semantic aspects in design results. This framework diminishes cognitive burden, boosts the relevance and originality of inspirations, and provides a reproducible, stage-specific AI assistance model for closing the knowledge translation gap in biomimicry design, though its current validation is limited to a small sample and a single task domain.

Abstract Image

Abstract Image

Abstract Image

仿生设计中阶段知识翻译的检索-增强生成框架。
在仿生学设计螺旋(BSD)的发现-抽象阶段,将生物学策略转化为实际设计原则存在相当大的障碍,特别是对于缺乏生物学背景的设计师。本研究引入了一个检索-增强生成(RAG)框架,该框架将包含2106个文档的专用AskNature数据库与本地执行的Llama 3.1大型语言模型(LLM)相结合,以填补这一空白。本研究的创新之处在于将北斗系统与分阶段的RAG-LLM框架相结合。与需要专业知识的BioTRIZ或SAPPhIRE不同,我们的方法为设计师提供了语义精确和生物学基础的策略,可以直接转化为实际的设计原则。一项由30名工业设计专业学生参与的准实验研究评估了三种设置——llm -only、RAG-Small和rag - large——贯穿六个仿生设计阶段。通过对文本和设计概念质量的专家评估以及检索多样性的审查来评估性能。研究结果表明,在具有高认知需求的阶段,RAG-Large始终产生优越的文本质量。它还检索了更多种类的高特异性生物学思想,并促进了设计结果中功能、美学和语义方面的更连贯的结合。该框架减轻了认知负担,提高了灵感的相关性和原创性,并提供了一个可重复的、特定阶段的人工智能辅助模型,用于缩小仿生设计中的知识翻译差距,尽管其目前的验证仅限于小样本和单一任务域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信