{"title":"Learning Guided Binary PSO Algorithm for Feature Selection and Reconstruction of Ultrasound Contrast Images in Endometrial Region Detection.","authors":"Zihao Zhang, Yongjun Liu, Haitong Zhao, Yu Zhou, Yifei Xu, Zhengyu Li","doi":"10.3390/biomimetics10090567","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of the endometrial region is critical for the early detection of endometrial lesions. However, current detection models still face two major challenges when processing endometrial imaging data: (1) In complex and noisy environments, recognition accuracy remains limited, partly due to the insufficient exploitation of color information within the images; (2) Traditional Two-dimensional PCA-based (2DPCA-based) feature selection methods have limited capacity to capture and represent key characteristics of the endometrial region. To address these challenges, this paper proposes a novel algorithm named Feature-Level Image Fusion and Improved Swarm Intelligence Optimization Algorithm (FLFSI), which integrates a learning guided binary particle swarm optimization (BPSO) strategy with an image feature selection and reconstruction framework to enhance the detection of endometrial regions in clinical ultrasound images. Specifically, FLFSI contributes to improving feature selection accuracy and image reconstruction quality, thereby enhancing the overall performance of region recognition tasks. First, we enhance endometrial image representation by incorporating feature engineering techniques that combine structural and color information, thereby improving reconstruction quality and emphasizing critical regional features. Second, the BPSO algorithm is introduced into the feature selection stage, improving the accuracy of feature selection and its global search ability while effectively reducing the impact of redundant features. Furthermore, we refined the BPSO design to accelerate convergence and enhance optimization efficiency during the selection process. The proposed FLFSI algorithm can be integrated into mainstream detection models such as YOLO11 and YOLOv12. When applied to YOLO11, FLFSI achieves 96.6% Box mAP and 87.8% Mask mAP. With YOLOv12, it further improves the Mask mAP to 88.8%, demonstrating excellent cross-model adaptability and robust detection performance. Extensive experimental results validate the effectiveness and broad applicability of FLFSI in enhancing endometrial region detection for clinical ultrasound image analysis.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090567","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of the endometrial region is critical for the early detection of endometrial lesions. However, current detection models still face two major challenges when processing endometrial imaging data: (1) In complex and noisy environments, recognition accuracy remains limited, partly due to the insufficient exploitation of color information within the images; (2) Traditional Two-dimensional PCA-based (2DPCA-based) feature selection methods have limited capacity to capture and represent key characteristics of the endometrial region. To address these challenges, this paper proposes a novel algorithm named Feature-Level Image Fusion and Improved Swarm Intelligence Optimization Algorithm (FLFSI), which integrates a learning guided binary particle swarm optimization (BPSO) strategy with an image feature selection and reconstruction framework to enhance the detection of endometrial regions in clinical ultrasound images. Specifically, FLFSI contributes to improving feature selection accuracy and image reconstruction quality, thereby enhancing the overall performance of region recognition tasks. First, we enhance endometrial image representation by incorporating feature engineering techniques that combine structural and color information, thereby improving reconstruction quality and emphasizing critical regional features. Second, the BPSO algorithm is introduced into the feature selection stage, improving the accuracy of feature selection and its global search ability while effectively reducing the impact of redundant features. Furthermore, we refined the BPSO design to accelerate convergence and enhance optimization efficiency during the selection process. The proposed FLFSI algorithm can be integrated into mainstream detection models such as YOLO11 and YOLOv12. When applied to YOLO11, FLFSI achieves 96.6% Box mAP and 87.8% Mask mAP. With YOLOv12, it further improves the Mask mAP to 88.8%, demonstrating excellent cross-model adaptability and robust detection performance. Extensive experimental results validate the effectiveness and broad applicability of FLFSI in enhancing endometrial region detection for clinical ultrasound image analysis.