Targeting viral RNA pseudoknots: a multi-level computational approach to identify RNA-binding novel small molecules.

IF 3.8 2区 化学 Q2 CHEMISTRY, APPLIED
Neha Jeena, Sahal Bin Saleem Cp, Shubham Srivastava, Devesh M Sawant, Inshad Ali Khan
{"title":"Targeting viral RNA pseudoknots: a multi-level computational approach to identify RNA-binding novel small molecules.","authors":"Neha Jeena, Sahal Bin Saleem Cp, Shubham Srivastava, Devesh M Sawant, Inshad Ali Khan","doi":"10.1007/s11030-025-11366-5","DOIUrl":null,"url":null,"abstract":"<p><p>The RNA pseudoknot of SARS-CoV-2 plays a pivotal role in - 1 programmed ribosomal frameshifting (- 1 PRF), which is essential for viral protein synthesis and replication. Targeting this RNA structural element offers a novel therapeutic strategy against COVID-19. In this study, we applied an integrative computational approach combining molecular docking, MM-GBSA binding free energy calculations, ADME-Tox profiling, and extended 500 ns molecular dynamics simulations to identify small molecules capable of disrupting the pseudoknot function. F2879-5340 emerged as a promising RNA-targeting candidate, demonstrating stable interactions with key pseudoknot nucleotides and favorable ΔG_bind values. Compared to the control compound Nafamostat, F2879-5340 exhibited superior predicted pharmacokinetic properties, including higher intestinal absorption, better bioavailability, and no mutagenic potential. These results suggest that F2879-5340 is a potent candidate for further experimental validation as an orally bioavailable - 1 PRF inhibitor. This work presents a novel computational pipeline for RNA-targeted drug discovery in the context of SARS-CoV-2.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11366-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The RNA pseudoknot of SARS-CoV-2 plays a pivotal role in - 1 programmed ribosomal frameshifting (- 1 PRF), which is essential for viral protein synthesis and replication. Targeting this RNA structural element offers a novel therapeutic strategy against COVID-19. In this study, we applied an integrative computational approach combining molecular docking, MM-GBSA binding free energy calculations, ADME-Tox profiling, and extended 500 ns molecular dynamics simulations to identify small molecules capable of disrupting the pseudoknot function. F2879-5340 emerged as a promising RNA-targeting candidate, demonstrating stable interactions with key pseudoknot nucleotides and favorable ΔG_bind values. Compared to the control compound Nafamostat, F2879-5340 exhibited superior predicted pharmacokinetic properties, including higher intestinal absorption, better bioavailability, and no mutagenic potential. These results suggest that F2879-5340 is a potent candidate for further experimental validation as an orally bioavailable - 1 PRF inhibitor. This work presents a novel computational pipeline for RNA-targeted drug discovery in the context of SARS-CoV-2.

靶向病毒RNA假结:鉴定RNA结合新小分子的多层次计算方法。
SARS-CoV-2的RNA假结在- 1程序性核糖体移框(- 1 PRF)中起关键作用,这是病毒蛋白合成和复制所必需的。靶向这种RNA结构元件为对抗COVID-19提供了一种新的治疗策略。在这项研究中,我们采用了一种综合计算方法,结合分子对接、MM-GBSA结合自由能计算、ADME-Tox分析和扩展的500 ns分子动力学模拟来识别能够破坏假结功能的小分子。F2879-5340显示出与关键假结核苷酸稳定的相互作用和有利的ΔG_bind值,成为一种有前途的rna靶向候选物。与对照化合物Nafamostat相比,F2879-5340具有更好的预测药代动力学特性,包括更高的肠道吸收、更好的生物利用度和无致突变潜力。这些结果表明F2879-5340作为一种口服生物可利用的- 1 PRF抑制剂,具有进一步实验验证的潜力。这项工作为SARS-CoV-2背景下的rna靶向药物发现提供了一种新的计算管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信