Deep learning powered breast ultrasound to improve characterization of breast masses: a prospective study.

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Veenu Singla, Dollphy Garg, Sapna Negi, Nandita Mehta, T Pallavi, Sonam Choudhary, Abhik Dhiman
{"title":"Deep learning powered breast ultrasound to improve characterization of breast masses: a prospective study.","authors":"Veenu Singla, Dollphy Garg, Sapna Negi, Nandita Mehta, T Pallavi, Sonam Choudhary, Abhik Dhiman","doi":"10.1177/02841851251377927","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundThe diagnostic performance of ultrasound (US) is heavily reliant on the operator's expertise. Advances in artificial intelligence (AI) have introduced deep learning (DL) tools that detect morphology beyond human perception, providing automated interpretations.PurposeTo evaluate Smart-Detect (S-Detect), a DL tool, for its potential to enhance diagnostic precision and standardize US assessments among radiologists with varying levels of experience.Material and MethodsThis prospective observational study was conducted between May and November 2024. US and S-Detect analyses were performed by a breast imaging fellow. Images were independently analyzed by five radiologists with varying experience in breast imaging (<1 year-15 years). Each radiologist assessed the images twice: without and with S-Detect. ROC analyses compared the diagnostic performance. True downgrades and upgrades were calculated to determine the biopsy reduction with AI assistance. Kappa statistics assessed radiologist agreement before and after incorporating S-Detect.ResultsThis study analyzed 230 breast masses from 216 patients. S-Detect demonstrated high specificity (92.7%), PPV (92.9%), NPV (87.9%), and accuracy (90.4%). It enhanced less experienced radiologists' performance, increasing the sensitivity (85% to 93.33%), specificity (54.5% to 73.64%), and accuracy (70.43% to 83.91%; <i>P</i> <0.001). AUC significantly increased for the less experienced radiologists (0.698 to 0.835 <i>P</i> <0.001), with no significant gains for the expert radiologist. It also reduced variability in assessment between radiologists with an increase in kappa agreement (0.459-0.696) and enabled significant downgrades, reducing unnecessary biopsies.ConclusionThe DL tool improves diagnostic accuracy, bridges the expertise gap, reduces reliance on invasive procedures, and enhances consistency in clinical decisions among radiologists.</p>","PeriodicalId":7143,"journal":{"name":"Acta radiologica","volume":" ","pages":"2841851251377927"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/02841851251377927","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundThe diagnostic performance of ultrasound (US) is heavily reliant on the operator's expertise. Advances in artificial intelligence (AI) have introduced deep learning (DL) tools that detect morphology beyond human perception, providing automated interpretations.PurposeTo evaluate Smart-Detect (S-Detect), a DL tool, for its potential to enhance diagnostic precision and standardize US assessments among radiologists with varying levels of experience.Material and MethodsThis prospective observational study was conducted between May and November 2024. US and S-Detect analyses were performed by a breast imaging fellow. Images were independently analyzed by five radiologists with varying experience in breast imaging (<1 year-15 years). Each radiologist assessed the images twice: without and with S-Detect. ROC analyses compared the diagnostic performance. True downgrades and upgrades were calculated to determine the biopsy reduction with AI assistance. Kappa statistics assessed radiologist agreement before and after incorporating S-Detect.ResultsThis study analyzed 230 breast masses from 216 patients. S-Detect demonstrated high specificity (92.7%), PPV (92.9%), NPV (87.9%), and accuracy (90.4%). It enhanced less experienced radiologists' performance, increasing the sensitivity (85% to 93.33%), specificity (54.5% to 73.64%), and accuracy (70.43% to 83.91%; P <0.001). AUC significantly increased for the less experienced radiologists (0.698 to 0.835 P <0.001), with no significant gains for the expert radiologist. It also reduced variability in assessment between radiologists with an increase in kappa agreement (0.459-0.696) and enabled significant downgrades, reducing unnecessary biopsies.ConclusionThe DL tool improves diagnostic accuracy, bridges the expertise gap, reduces reliance on invasive procedures, and enhances consistency in clinical decisions among radiologists.

深度学习驱动乳腺超声改善乳腺肿块特征:一项前瞻性研究。
超声(US)的诊断性能在很大程度上依赖于操作者的专业知识。人工智能(AI)的进步引入了深度学习(DL)工具,可以检测超出人类感知的形态,并提供自动解释。目的评估智能检测(S-Detect),一种深度学习工具,以提高诊断精度,并使具有不同经验水平的放射科医生的美国评估标准化。材料和方法本前瞻性观察研究于2024年5月至11月进行。由乳腺影像学研究员进行US和S-Detect分析。影像由五名具有不同乳腺成像经验的放射科医生独立分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta radiologica
Acta radiologica 医学-核医学
CiteScore
2.70
自引率
0.00%
发文量
170
审稿时长
3-8 weeks
期刊介绍: Acta Radiologica publishes articles on all aspects of radiology, from clinical radiology to experimental work. It is known for articles based on experimental work and contrast media research, giving priority to scientific original papers. The distinguished international editorial board also invite review articles, short communications and technical and instrumental notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信