{"title":"Area-Efficient Cascode Inductive Source-Degenerated CMOS LNA for GPS L1 Band","authors":"Kunpeng Xu, Haoran Sun, Lingzhi Xu, Yong Li, Xiaopeng Yu","doi":"10.1155/mmce/5576122","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an area-efficient low-noise amplifier for GPS L1 band application is designed. Besides the requirements of noise figure (NF), bandwidth, and input matching, the design methodology has been focused on the area efficiency. As a design example, a prototype L1 band LNA is implemented using standard 0.11 <i>μ</i>m CMOS technology. The design is based on a conventional cascode inductive source-degenerated topology, but special care has been dedicated to the three inductors. To reduce cost, specifically by minimizing on-chip area and imposing constraints on power consumption, the source inductor is implemented using a bond wire. As the dominant contributor of silicon area, the drain inductor has been optimized in a very area-efficient way. The design trade-off between input matching and noise matching is consequently adopted to achieve minimized NF. Measurement results indicate that the LNA achieves a measured power gain of 14.3 dB at 1.57 GHz with a NF of 1.37 dB, while consuming 1.9 mA from a standard 1.8 V supply and occupying a chip area of 300 × 230 <i>μ</i>m.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/5576122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/5576122","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an area-efficient low-noise amplifier for GPS L1 band application is designed. Besides the requirements of noise figure (NF), bandwidth, and input matching, the design methodology has been focused on the area efficiency. As a design example, a prototype L1 band LNA is implemented using standard 0.11 μm CMOS technology. The design is based on a conventional cascode inductive source-degenerated topology, but special care has been dedicated to the three inductors. To reduce cost, specifically by minimizing on-chip area and imposing constraints on power consumption, the source inductor is implemented using a bond wire. As the dominant contributor of silicon area, the drain inductor has been optimized in a very area-efficient way. The design trade-off between input matching and noise matching is consequently adopted to achieve minimized NF. Measurement results indicate that the LNA achieves a measured power gain of 14.3 dB at 1.57 GHz with a NF of 1.37 dB, while consuming 1.9 mA from a standard 1.8 V supply and occupying a chip area of 300 × 230 μm.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.