Gregory F. Rattray, Hugo R. Jourde, Sylvain Baillet, Emily B. J. Coffey
{"title":"Exploring Deep Magnetoencephalography via Thalamo-Cortical Sleep Spindles","authors":"Gregory F. Rattray, Hugo R. Jourde, Sylvain Baillet, Emily B. J. Coffey","doi":"10.1002/hbm.70354","DOIUrl":null,"url":null,"abstract":"<p>Subcortical brain regions like the thalamus are integral to numerous sensory and cognitive functions. Magnetoencephalography (MEG) enables the study of widespread brain networks with high temporal resolution, but the degree to which deep sources like the thalamus can be resolved remains unclear. Functional connectivity methods may enhance differentiation, yet few studies have extended them beyond the cortex. We investigated the possibility of resolving deep sources via connectivity patterns during thalamo-cortical sleep spindles to leverage their well-characterized circuitry, and during spindle-free periods of non-rapid eye movement sleep to explore neural recordings that lack such high-amplitude bursts of activity. MEG and electroencephalography (EEG) were recorded in 19 participants during a 2-h nap. Spindle and non-spindle periods were identified, and connectivity was assessed using coherence and imaginary coherence within a spindle-related network. Graph theory was also applied to identify network hubs. As expected, functional connectivity increased during spindles within a distributed thalamo-cortical-hippocampal network. Cortical connectivity patterns allowed differentiation among small thalamic nuclei, but metric choice and contrast use influenced topography and distance effects. Graph theory revealed distinct cortical, thalamic, and hippocampal contributions to fast (13–16 Hz) and slow (10–13 Hz) sigma-band connectivity. These findings demonstrate that MEG functional connectivity can resolve deep brain networks during NREM sleep and during spindles, and demonstrate how it can be used to study the functional roles of subcortical regions non-invasively in healthy humans. By clarifying methodological influences, we aim to guide future research design and interpretation.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70354","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70354","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Subcortical brain regions like the thalamus are integral to numerous sensory and cognitive functions. Magnetoencephalography (MEG) enables the study of widespread brain networks with high temporal resolution, but the degree to which deep sources like the thalamus can be resolved remains unclear. Functional connectivity methods may enhance differentiation, yet few studies have extended them beyond the cortex. We investigated the possibility of resolving deep sources via connectivity patterns during thalamo-cortical sleep spindles to leverage their well-characterized circuitry, and during spindle-free periods of non-rapid eye movement sleep to explore neural recordings that lack such high-amplitude bursts of activity. MEG and electroencephalography (EEG) were recorded in 19 participants during a 2-h nap. Spindle and non-spindle periods were identified, and connectivity was assessed using coherence and imaginary coherence within a spindle-related network. Graph theory was also applied to identify network hubs. As expected, functional connectivity increased during spindles within a distributed thalamo-cortical-hippocampal network. Cortical connectivity patterns allowed differentiation among small thalamic nuclei, but metric choice and contrast use influenced topography and distance effects. Graph theory revealed distinct cortical, thalamic, and hippocampal contributions to fast (13–16 Hz) and slow (10–13 Hz) sigma-band connectivity. These findings demonstrate that MEG functional connectivity can resolve deep brain networks during NREM sleep and during spindles, and demonstrate how it can be used to study the functional roles of subcortical regions non-invasively in healthy humans. By clarifying methodological influences, we aim to guide future research design and interpretation.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.