{"title":"The Mismatch Negativity Compared: EEG, SQUID-MEG, and Novel 4Helium-OPMs","authors":"Tjerk P. Gutteling, Jérémie Mattout, Sébastien Daligault, Julien Jung, Etienne Labyt, Denis Schwartz, Françoise Lecaignard","doi":"10.1002/hbm.70368","DOIUrl":null,"url":null,"abstract":"<p>Magneto-encephalography (MEG) provides a higher spatial resolution than electro-encephalography (EEG) to measure human auditory responses. However, conventional cryogenic MEG systems (SQUID-MEG) suffer from severe technological restrictions limiting, for instance, routine clinical use. Fortunately, a new generation of MEG sensors, optically pumped magnetometers (OPMs), has been developed to bridge the gap, combining the wearability of EEG with the benefits of MEG signal acquisition. We aim to assess their potential for studying auditory mismatch processing. The auditory mismatch negativity (MMN) is a well-characterized evoked component observable using a passive oddball paradigm with two-tone sound sequences. It has been extensively described using both EEG and MEG and is part of many EEG-based clinical applications, such as the assessment of patients with disorders of consciousness. MMN is therefore a relevant candidate to evaluate OPM performance. We use recently developed Helium-OPMs, which are high dynamic range MEG sensors that operate at room temperature. We compare their performance with cryogenic SQUID-MEG and EEG in a passive frequency oddball paradigm. Results show a significant MMN across subjects in all modalities as well as a high temporal similarity between modalities. Signal-to-noise ratios were also similar, and detection of significant individual MMN (within-subjects) using the OPM system was equal to or better than EEG. Given that the OPM system tested here is a prototype comprised of only five sensors, these results are a promising step towards wearable MEG that combines the advantages of MEG and EEG.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70368","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70368","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Magneto-encephalography (MEG) provides a higher spatial resolution than electro-encephalography (EEG) to measure human auditory responses. However, conventional cryogenic MEG systems (SQUID-MEG) suffer from severe technological restrictions limiting, for instance, routine clinical use. Fortunately, a new generation of MEG sensors, optically pumped magnetometers (OPMs), has been developed to bridge the gap, combining the wearability of EEG with the benefits of MEG signal acquisition. We aim to assess their potential for studying auditory mismatch processing. The auditory mismatch negativity (MMN) is a well-characterized evoked component observable using a passive oddball paradigm with two-tone sound sequences. It has been extensively described using both EEG and MEG and is part of many EEG-based clinical applications, such as the assessment of patients with disorders of consciousness. MMN is therefore a relevant candidate to evaluate OPM performance. We use recently developed Helium-OPMs, which are high dynamic range MEG sensors that operate at room temperature. We compare their performance with cryogenic SQUID-MEG and EEG in a passive frequency oddball paradigm. Results show a significant MMN across subjects in all modalities as well as a high temporal similarity between modalities. Signal-to-noise ratios were also similar, and detection of significant individual MMN (within-subjects) using the OPM system was equal to or better than EEG. Given that the OPM system tested here is a prototype comprised of only five sensors, these results are a promising step towards wearable MEG that combines the advantages of MEG and EEG.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.