Automated Identification of Auroral Luminosity Boundaries Using pyIntensityFeatures

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Angeline G. Burrell, Gareth Chisham, Nicola Longden, Bruce Fritz, Kate A. Zawdie
{"title":"Automated Identification of Auroral Luminosity Boundaries Using pyIntensityFeatures","authors":"Angeline G. Burrell,&nbsp;Gareth Chisham,&nbsp;Nicola Longden,&nbsp;Bruce Fritz,&nbsp;Kate A. Zawdie","doi":"10.1029/2025JA034230","DOIUrl":null,"url":null,"abstract":"<p>Imagers that observe optical or ultraviolet emissions from the atmosphere are commonly used to identify and study ionospheric phenomena. These phenomena include the auroral oval, equatorial plasma bubbles, and traveling ionospheric disturbances. One difficulty with using imager observations is accurately and automatically retrieving locations of interest from these images. This article presents an automated method designed to identify auroral luminosity boundaries from space-based imager data. This method was originally developed for the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, but has been further adapted for use with a wider range of observations. This article discusses the updated boundary detection method, and demonstrates the process on two different satellite data sets. The updated detection method has been made publicly accessible through a new Python package, <i>pyIntensityFeatures</i>.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034230","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Imagers that observe optical or ultraviolet emissions from the atmosphere are commonly used to identify and study ionospheric phenomena. These phenomena include the auroral oval, equatorial plasma bubbles, and traveling ionospheric disturbances. One difficulty with using imager observations is accurately and automatically retrieving locations of interest from these images. This article presents an automated method designed to identify auroral luminosity boundaries from space-based imager data. This method was originally developed for the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, but has been further adapted for use with a wider range of observations. This article discusses the updated boundary detection method, and demonstrates the process on two different satellite data sets. The updated detection method has been made publicly accessible through a new Python package, pyIntensityFeatures.

Abstract Image

Abstract Image

利用光强特征自动识别极光亮度边界
观测大气光学或紫外线辐射的成像仪通常用于识别和研究电离层现象。这些现象包括极光椭圆、赤道等离子体气泡和行进电离层扰动。使用成像仪观测的一个困难是准确和自动地从这些图像中检索感兴趣的位置。本文提出了一种利用天基成像仪数据自动识别极光亮度边界的方法。这种方法最初是为“磁圈-极光全球探测成像仪”(IMAGE)的观测而开发的,但已进一步适应于更广泛的观测。本文讨论了更新后的边界检测方法,并在两个不同的卫星数据集上演示了这一过程。更新后的检测方法可以通过一个新的Python包pyIntensityFeatures公开访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信