Congruence systems in dual discriminator varieties

IF 0.6 4区 数学 Q3 MATHEMATICS
Miguel Campercholi, Diego Castaño, Gonzalo Zigarán
{"title":"Congruence systems in dual discriminator varieties","authors":"Miguel Campercholi,&nbsp;Diego Castaño,&nbsp;Gonzalo Zigarán","doi":"10.1007/s00012-025-00891-x","DOIUrl":null,"url":null,"abstract":"<div><p>A <i>congruence system</i> on an algebra <span>\\(\\textbf{A}\\)</span> is a tuple <span>\\(\\langle \\theta _1,\\ldots ,\\theta _k,\\)</span> <span>\\(a_1,\\ldots ,a_k\\rangle \\)</span> where <span>\\(\\theta _1,\\ldots ,\\theta _k \\in \\mathop {\\textrm{Con}}\\textbf{A}\\)</span>, <span>\\(a_1,\\ldots ,a_k \\in A\\)</span> and <span>\\(\\langle a_i,a_j\\rangle \\in \\theta _i \\vee \\theta _j\\)</span> for all <span>\\(i,j \\in \\{1,\\ldots ,k\\}\\)</span>. A <i>solution</i> to such a congruence system is an element <span>\\(a \\in A\\)</span> satisfying <span>\\(\\langle a,a_i\\rangle \\in \\theta _i\\)</span> for all <span>\\(i \\in \\{1,\\ldots ,k\\}\\)</span>. A tuple of congruences <span>\\(\\langle \\theta _1,\\ldots , \\theta _k\\rangle \\)</span> is said to be a <i>Chinese Remainder tuple</i> (CR tuple for short) of <span>\\(\\textbf{A}\\)</span> provided that every system <span>\\(\\langle \\theta _1,\\ldots ,\\theta _k,a_1,\\ldots ,a_k\\rangle \\)</span> with <span>\\(a_1,\\ldots ,a_k \\in A\\)</span> has a solution. Since two congruences <span>\\(\\theta _1,\\theta _2\\)</span> form a CR tuple if and only if they permute, the property of being a CR tuple is a generalization of the notion of permutability that makes sense for more than two congruences. The main result of this article is a characterization of CR tuples for finite algebras in dual discriminator varieties. As an application, we obtain a neat characterization of CR tuples for finite distributive lattices.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00891-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A congruence system on an algebra \(\textbf{A}\) is a tuple \(\langle \theta _1,\ldots ,\theta _k,\) \(a_1,\ldots ,a_k\rangle \) where \(\theta _1,\ldots ,\theta _k \in \mathop {\textrm{Con}}\textbf{A}\), \(a_1,\ldots ,a_k \in A\) and \(\langle a_i,a_j\rangle \in \theta _i \vee \theta _j\) for all \(i,j \in \{1,\ldots ,k\}\). A solution to such a congruence system is an element \(a \in A\) satisfying \(\langle a,a_i\rangle \in \theta _i\) for all \(i \in \{1,\ldots ,k\}\). A tuple of congruences \(\langle \theta _1,\ldots , \theta _k\rangle \) is said to be a Chinese Remainder tuple (CR tuple for short) of \(\textbf{A}\) provided that every system \(\langle \theta _1,\ldots ,\theta _k,a_1,\ldots ,a_k\rangle \) with \(a_1,\ldots ,a_k \in A\) has a solution. Since two congruences \(\theta _1,\theta _2\) form a CR tuple if and only if they permute, the property of being a CR tuple is a generalization of the notion of permutability that makes sense for more than two congruences. The main result of this article is a characterization of CR tuples for finite algebras in dual discriminator varieties. As an application, we obtain a neat characterization of CR tuples for finite distributive lattices.

对偶鉴别变体中的同余系统
代数\(\textbf{A}\)上的同余系统是一个元组\(\langle \theta _1,\ldots ,\theta _k,\)\(a_1,\ldots ,a_k\rangle \),其中\(\theta _1,\ldots ,\theta _k \in \mathop {\textrm{Con}}\textbf{A}\), \(a_1,\ldots ,a_k \in A\)和\(\langle a_i,a_j\rangle \in \theta _i \vee \theta _j\)表示所有\(i,j \in \{1,\ldots ,k\}\)。这种同余系统的解是一个元素\(a \in A\)满足\(\langle a,a_i\rangle \in \theta _i\)对所有\(i \in \{1,\ldots ,k\}\)。一个同余元组\(\langle \theta _1,\ldots , \theta _k\rangle \)被称为\(\textbf{A}\)的中文余元组(简称CR元组),只要每个系统\(\langle \theta _1,\ldots ,\theta _k,a_1,\ldots ,a_k\rangle \)都有\(a_1,\ldots ,a_k \in A\)的解。由于两个同余\(\theta _1,\theta _2\)构成一个CR元组当且仅当它们置换,所以作为CR元组的性质是置换概念的推广,对于多于两个同余是有意义的。本文的主要结果是对偶鉴别子簇中有限代数的CR元组的刻划。作为一个应用,我们得到了有限分配格的CR元组的一个整洁的刻划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信