{"title":"Simulation of ductile failure of a notched-tension specimen of 3D printed 316L stainless steel","authors":"Jianing Xie, Krishnaswamy Ravi-Chandar","doi":"10.1007/s10704-025-00851-5","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development of 3D printing of 316L stainless steel thin-walled structures obtained by direct energy deposition has generated an increased interest in the mechanical properties of such materials for use in applications; in particular, failure models are needed to ensure structural reliability. We consider the response of uniaxial tension specimens, with and without notches, to characterize the constitutive and failure behavior of the material. Specifically, we use numerical simulations of the notched tension experiment, achieved with a simple power-law strain hardening model and a failure criterion based on attaining a triaxiality-dependent critical strain-to-failure, to demonstrate that this model is capable of reproducing the material behavior accurately.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00851-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of 3D printing of 316L stainless steel thin-walled structures obtained by direct energy deposition has generated an increased interest in the mechanical properties of such materials for use in applications; in particular, failure models are needed to ensure structural reliability. We consider the response of uniaxial tension specimens, with and without notches, to characterize the constitutive and failure behavior of the material. Specifically, we use numerical simulations of the notched tension experiment, achieved with a simple power-law strain hardening model and a failure criterion based on attaining a triaxiality-dependent critical strain-to-failure, to demonstrate that this model is capable of reproducing the material behavior accurately.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.