Manganese-coated granular oyster shells: a novel approach for heavy metal removal from urban stormwater runoff

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Quynh Thi Phuong Tran, Trung Thanh Nguyen, Oanh Nguyen Song Dao, Chia-Yu Lin, Po-Hsun Lin
{"title":"Manganese-coated granular oyster shells: a novel approach for heavy metal removal from urban stormwater runoff","authors":"Quynh Thi Phuong Tran,&nbsp;Trung Thanh Nguyen,&nbsp;Oanh Nguyen Song Dao,&nbsp;Chia-Yu Lin,&nbsp;Po-Hsun Lin","doi":"10.1007/s13201-025-02568-1","DOIUrl":null,"url":null,"abstract":"<p>This study introduces manganese oxide (MnO<sub>x</sub>)-coated granular oyster shells (MnO<sub>x</sub>@GOS) as an advanced adsorbent for heavy metal removal from urban stormwater runoff. The MnO<sub>x</sub> coating increased the surface area of ​​granular oyster shell (GOS) by 132% (from 1.0534 to 2.4420 m<sup>2</sup>/g), enhancing the adsorption capacity. Selective adsorption followed the order of Pb(II) &gt; Cu(II) &gt; Zn(II) &gt; Ni(II), influenced by ionic radius compatibility, hydration energy, and MnO<sub>x</sub> redox interactions. Kinetic studies showed that the adsorption process was fit to the pseudo-second-order (<i>R</i><sup><i>2</i></sup> = 0.9590–0.9931), confirming chemisorption as the dominant mechanism. The highest kinetic rate constant (<i>K</i><sub><i>2</i></sub> = 0.0766 g/mg·min) was observed for Ni(II), whereas Pb(II) exhibited the strongest affinity. The Freundlich model provided a better fit (<i>R</i><sup><i>2</i></sup> = 0.9900–0.9969) than the Langmuir model (<i>R</i><sup><i>2</i></sup> = 0.9433–0.9826), confirming that adsorption primarily occurred through a multilayer process on a heterogeneous surface. Fixed-bed column studies demonstrated over 90% removal efficiency for Pb(II) and Cu(II) over eight days, confirming MnO<sub>x</sub>@GOS as an effective adsorbent. With abundant oyster shell waste and a simple synthesis process, MnO<sub>x</sub>@GOS has great potential for cost-effective, large-scale use in low impact development (LID) systems such as bioretention cells and permeable pavements. However, ensuring long-term stability, efficient regeneration, and consistent performance under a wide range of environmental conditions remains a key challenge for real-world deployment.</p>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 8","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02568-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02568-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces manganese oxide (MnOx)-coated granular oyster shells (MnOx@GOS) as an advanced adsorbent for heavy metal removal from urban stormwater runoff. The MnOx coating increased the surface area of ​​granular oyster shell (GOS) by 132% (from 1.0534 to 2.4420 m2/g), enhancing the adsorption capacity. Selective adsorption followed the order of Pb(II) > Cu(II) > Zn(II) > Ni(II), influenced by ionic radius compatibility, hydration energy, and MnOx redox interactions. Kinetic studies showed that the adsorption process was fit to the pseudo-second-order (R2 = 0.9590–0.9931), confirming chemisorption as the dominant mechanism. The highest kinetic rate constant (K2 = 0.0766 g/mg·min) was observed for Ni(II), whereas Pb(II) exhibited the strongest affinity. The Freundlich model provided a better fit (R2 = 0.9900–0.9969) than the Langmuir model (R2 = 0.9433–0.9826), confirming that adsorption primarily occurred through a multilayer process on a heterogeneous surface. Fixed-bed column studies demonstrated over 90% removal efficiency for Pb(II) and Cu(II) over eight days, confirming MnOx@GOS as an effective adsorbent. With abundant oyster shell waste and a simple synthesis process, MnOx@GOS has great potential for cost-effective, large-scale use in low impact development (LID) systems such as bioretention cells and permeable pavements. However, ensuring long-term stability, efficient regeneration, and consistent performance under a wide range of environmental conditions remains a key challenge for real-world deployment.

锰包覆颗粒牡蛎壳:从城市雨水径流中去除重金属的新方法
本研究介绍了锰氧化物(MnOx)包覆的颗粒牡蛎壳(MnOx@GOS)作为一种高级吸附剂,用于去除城市雨水径流中的重金属。MnOx包覆使颗粒牡蛎壳(GOS)的表面积增加了132%(从1.0534 m2/g增加到2.4420 m2/g),提高了吸附能力。选择性吸附的顺序为Pb(II) > Cu(II) > Zn(II) > Ni(II),受离子半径相容性、水合能和MnOx氧化还原相互作用的影响。动力学研究表明,吸附过程符合准二级(R2 = 0.9590 ~ 0.9931),确定了化学吸附是主要吸附机理。Ni(II)与Pb(II)的亲合力最大(K2 = 0.0766 g/mg·min), Pb(II)的亲合力最强。Freundlich模型的拟合结果(R2 = 0.99900 - 0.9969)优于Langmuir模型(R2 = 0.9433-0.9826),证实了吸附主要发生在非均质表面的多层过程中。固定床柱研究表明,在8天内,Pb(II)和Cu(II)的去除效率超过90%,证实MnOx@GOS是有效的吸附剂。凭借丰富的牡蛎壳废料和简单的合成工艺,MnOx@GOS在低影响开发(LID)系统(如生物保留细胞和透水路面)中具有巨大的成本效益和大规模应用潜力。然而,在广泛的环境条件下,确保长期稳定性、高效再生和稳定的性能仍然是实际应用的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信