{"title":"Generalized Degenerate Clifford and Lipschitz Groups in Geometric Algebras","authors":"Ekaterina Filimoshina, Dmitry Shirokov","doi":"10.1007/s00006-025-01390-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces and studies generalized degenerate Clifford and Lipschitz groups in geometric (Clifford) algebras. These Lie groups preserve the direct sums of the subspaces determined by the grade involution and reversion under the adjoint and twisted adjoint representations in degenerate geometric algebras. We prove that the generalized degenerate Clifford and Lipschitz groups can be defined using centralizers and twisted centralizers of fixed grades subspaces and the norm functions that are widely used in the theory of spin groups. We study the relations between these groups and consider them in the particular cases of plane-based geometric algebras and Grassmann algebras. The corresponding Lie algebras are studied. The presented groups are interesting for the study of generalized degenerate spin groups and applications in computer science, physics, and engineering.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01390-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces and studies generalized degenerate Clifford and Lipschitz groups in geometric (Clifford) algebras. These Lie groups preserve the direct sums of the subspaces determined by the grade involution and reversion under the adjoint and twisted adjoint representations in degenerate geometric algebras. We prove that the generalized degenerate Clifford and Lipschitz groups can be defined using centralizers and twisted centralizers of fixed grades subspaces and the norm functions that are widely used in the theory of spin groups. We study the relations between these groups and consider them in the particular cases of plane-based geometric algebras and Grassmann algebras. The corresponding Lie algebras are studied. The presented groups are interesting for the study of generalized degenerate spin groups and applications in computer science, physics, and engineering.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.