Detection and Classification of Aviation Cable Insulation Defects Using Digital Holography and Deep Learning

IF 2.4 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Athira Shaji, Sheeja M. K.
{"title":"Detection and Classification of Aviation Cable Insulation Defects Using Digital Holography and Deep Learning","authors":"Athira Shaji,&nbsp;Sheeja M. K.","doi":"10.1007/s10921-025-01276-9","DOIUrl":null,"url":null,"abstract":"<div><p>The insulation of aviation cables is critical to aircraft safety but is vulnerable to defects such as cracks, ruptures, slices, and swelling. Reliable nondestructive testing (NDT) of these defects is challenging due to environmental interference, noise, and the limitations of existing inspection techniques. This work presents a novel NDT approach integrating reflective digital in-line holography with a Combined Anisotropic Total Variation (CATV) reconstruction algorithm and an Xception-based deep transfer learning model. The CATV reconstruction suppresses twin-image artifacts and preserves structural detail, enabling the generation of a phase-map dataset of multiple defect types. Using this dataset, the Xception-based classifier achieved 98% accuracy, surpassing state-of-the-art approaches. The contributions of this work are: (i) using CATV-based reconstruction for reflective holography of aviation cables, (ii) creating a phase-map dataset of insulation defects, and (iii) demonstrating the feasibility of a high-precision, non-contact inspection method for aviation safety applications.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01276-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The insulation of aviation cables is critical to aircraft safety but is vulnerable to defects such as cracks, ruptures, slices, and swelling. Reliable nondestructive testing (NDT) of these defects is challenging due to environmental interference, noise, and the limitations of existing inspection techniques. This work presents a novel NDT approach integrating reflective digital in-line holography with a Combined Anisotropic Total Variation (CATV) reconstruction algorithm and an Xception-based deep transfer learning model. The CATV reconstruction suppresses twin-image artifacts and preserves structural detail, enabling the generation of a phase-map dataset of multiple defect types. Using this dataset, the Xception-based classifier achieved 98% accuracy, surpassing state-of-the-art approaches. The contributions of this work are: (i) using CATV-based reconstruction for reflective holography of aviation cables, (ii) creating a phase-map dataset of insulation defects, and (iii) demonstrating the feasibility of a high-precision, non-contact inspection method for aviation safety applications.

Abstract Image

基于数字全息和深度学习的航空电缆绝缘缺陷检测与分类
航空电缆的绝缘对飞机的安全至关重要,但容易出现裂纹、断裂、片状、膨胀等缺陷。由于环境干扰、噪声和现有检测技术的限制,对这些缺陷进行可靠的无损检测(NDT)是具有挑战性的。本研究提出了一种新的无损检测方法,将反射式数字直线全息与各向异性全变分(CATV)重建算法和基于例外的深度迁移学习模型相结合。CATV重建抑制了双图像伪影并保留了结构细节,从而能够生成多种缺陷类型的相图数据集。使用这个数据集,基于exception的分类器达到了98%的准确率,超过了最先进的方法。这项工作的贡献是:(i)使用基于catv的重建进行航空电缆的反射全息成像,(ii)创建绝缘缺陷的相图数据集,以及(iii)证明高精度,非接触检测方法用于航空安全应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信