Fast evaluation of Feynman integrals for Monte Carlo generators

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Pau Petit Rosàs, William J. Torres Bobadilla
{"title":"Fast evaluation of Feynman integrals for Monte Carlo generators","authors":"Pau Petit Rosàs,&nbsp;William J. Torres Bobadilla","doi":"10.1007/JHEP09(2025)210","DOIUrl":null,"url":null,"abstract":"<p>Building on the idea of numerically integrating differential equations satisfied by Feynman integrals, we propose a novel strategy for handling branch cuts within a numerical framework. We develop an integrator capable of evaluating a basis of integrals in both double and quadruple precision, achieving significantly reduced computational times compared to existing tools. We demonstrate the performance of our integrator by evaluating one- and two-loop five-point Feynman integrals with up to nine complex kinematic scales. In particular, we apply our method to the radiative return process of massive electron-positron annihilation into pions plus an energetic photon within scalar QED, for which we also build the differential equation, and extend it to the case where virtual photons acquire an auxiliary complex mass under the Generalised Vector-Meson Dominance model. Furthermore, we validate our approach on two integral families relevant for the two-loop production of <span>\\( t\\overline{t} \\)</span> + jet. The integrator achieves, in double precision, execution times of the order of milliseconds for one-loop topologies and hundreds of milliseconds for the two-loop families, enabling for on-the-fly computation of Feynman integrals in Monte Carlo generators and a more efficient generation of grids for the topologies with prohibitive computational costs.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP09(2025)210.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP09(2025)210","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Building on the idea of numerically integrating differential equations satisfied by Feynman integrals, we propose a novel strategy for handling branch cuts within a numerical framework. We develop an integrator capable of evaluating a basis of integrals in both double and quadruple precision, achieving significantly reduced computational times compared to existing tools. We demonstrate the performance of our integrator by evaluating one- and two-loop five-point Feynman integrals with up to nine complex kinematic scales. In particular, we apply our method to the radiative return process of massive electron-positron annihilation into pions plus an energetic photon within scalar QED, for which we also build the differential equation, and extend it to the case where virtual photons acquire an auxiliary complex mass under the Generalised Vector-Meson Dominance model. Furthermore, we validate our approach on two integral families relevant for the two-loop production of \( t\overline{t} \) + jet. The integrator achieves, in double precision, execution times of the order of milliseconds for one-loop topologies and hundreds of milliseconds for the two-loop families, enabling for on-the-fly computation of Feynman integrals in Monte Carlo generators and a more efficient generation of grids for the topologies with prohibitive computational costs.

蒙特卡罗发生器费曼积分的快速计算
基于费曼积分所满足的微分方程的数值积分思想,我们提出了一种在数值框架内处理分支切割的新策略。我们开发了一种能够以双倍和四倍精度评估积分基的积分器,与现有工具相比,大大减少了计算时间。我们通过评估一个和两个环五点费曼积分与多达九个复杂的运动尺度来证明我们的积分器的性能。特别地,我们将我们的方法应用于标量QED中大量电子-正电子湮灭成介子加高能光子的辐射返回过程,为此我们也建立了微分方程,并将其扩展到广义矢量-介子优势模型下虚光子获得辅助复质量的情况。此外,我们在与\( t\overline{t} \) +喷气双循环生产相关的两个积分族上验证了我们的方法。该积分器以双精度实现了单环拓扑的毫秒级和双环家族的数百毫秒级的执行时间,从而实现了蒙特卡洛生成器中费曼积分的实时计算,并以高昂的计算成本更有效地为拓扑生成网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信