Existence of Solutions for a Fractional Relativistic Schrödinger Equation with Indefinite Potentials

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Jun Wang, Li Wang, Qiao-cheng Zhong
{"title":"Existence of Solutions for a Fractional Relativistic Schrödinger Equation with Indefinite Potentials","authors":"Jun Wang,&nbsp;Li Wang,&nbsp;Qiao-cheng Zhong","doi":"10.1007/s10255-024-1031-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the following fractional relativistic Schrödinger equation: </p><div><div><span>$$(-\\Delta+m^{2})^{s}u+V(x)u=f(x,u),\\qquad x\\in\\mathbb{R}^{N},$$</span></div></div><p> where (−Δ + <i>m</i><sup>2</sup>)<sup><i>s</i></sup> is the fractional relativistic Schrödinger operator, <i>s</i> ∈ (0, 1), <i>m</i> &gt; 0, <i>V</i>: ℝ<sup><i>N</i></sup> → ℝ is a continuous potential and <i>f</i>: ℝ<sup><i>N</i></sup> × ℝ → ℝ is a superlinear continuous nonlinearity with subcritical growth. We consider the case where the potential <i>V</i> is indefinite so that the relativistic Schrödinger operator (−Δ + <i>m</i><sup>2</sup>)<sup><i>s</i></sup> + <i>V</i> possesses a finite-dimensional negative space. With the help of extension method and Morse theory, the existence of a nontrivial solution for the above problem is obtained.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 3","pages":"847 - 858"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1031-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the following fractional relativistic Schrödinger equation:

$$(-\Delta+m^{2})^{s}u+V(x)u=f(x,u),\qquad x\in\mathbb{R}^{N},$$

where (−Δ + m2)s is the fractional relativistic Schrödinger operator, s ∈ (0, 1), m > 0, V: ℝN → ℝ is a continuous potential and f: ℝN × ℝ → ℝ is a superlinear continuous nonlinearity with subcritical growth. We consider the case where the potential V is indefinite so that the relativistic Schrödinger operator (−Δ + m2)s + V possesses a finite-dimensional negative space. With the help of extension method and Morse theory, the existence of a nontrivial solution for the above problem is obtained.

具有不定势的分数阶相对论Schrödinger方程解的存在性
本文研究如下分数阶相对论Schrödinger方程:$$(-\Delta+m^{2})^{s}u+V(x)u=f(x,u),\qquad x\in\mathbb{R}^{N},$$其中(−Δ + m2)s为分数阶相对论Schrödinger算子,s∈(0,1),m &gt; 0, V:∈N→∈是连续势,f:∈N ×∈→∈是具有亚临界增长的超线性连续非线性。我们考虑势V不确定的情况,使得相对论性Schrödinger算子(−Δ + m2)s + V具有有限维负空间。利用可拓方法和Morse理论,得到了上述问题非平凡解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信