Global Solutions to the Damped Incompressible Magnetohydrodynamics System without Dissipation

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Xu-long Qin, Hua Qiu, Zheng-an Yao
{"title":"Global Solutions to the Damped Incompressible Magnetohydrodynamics System without Dissipation","authors":"Xu-long Qin,&nbsp;Hua Qiu,&nbsp;Zheng-an Yao","doi":"10.1007/s10255-025-0011-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the Cauchy problem of the <i>d</i>-dimensional damping incompressible magnetohydrodynamics system without dissipation. Precisely, this system includes a velocity damped term and a magnetic damped term. We establish the existence and uniqueness of global solutions to this damped system in the critical Besov spaces by means of the Fourier frequency localization and Bony paraproduct decomposition.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 3","pages":"666 - 680"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0011-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the Cauchy problem of the d-dimensional damping incompressible magnetohydrodynamics system without dissipation. Precisely, this system includes a velocity damped term and a magnetic damped term. We establish the existence and uniqueness of global solutions to this damped system in the critical Besov spaces by means of the Fourier frequency localization and Bony paraproduct decomposition.

无耗散的阻尼不可压缩磁流体动力学系统的全局解
本文考虑无耗散的d维阻尼不可压缩磁流体动力系统的柯西问题。准确地说,该系统包括速度阻尼项和磁阻尼项。利用傅里叶频率局部化和博尼副积分解,建立了该阻尼系统在临界Besov空间中全局解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信