Some generalized metric properties of n-semitopological groups

IF 0.6 4区 数学 Q3 MATHEMATICS
Fucai Lin, Xixi Qi
{"title":"Some generalized metric properties of n-semitopological groups","authors":"Fucai Lin,&nbsp;Xixi Qi","doi":"10.1007/s00012-025-00897-5","DOIUrl":null,"url":null,"abstract":"<div><p>A semitopological group <i>G</i> is said to be an <i>n-semitopological group</i>, if for any <span>\\(g\\in G\\)</span> with <span>\\(e\\not \\in \\overline{\\{g\\}}\\)</span> there is a neighborhood <i>W</i> of <i>e</i> such that <span>\\(g\\not \\in W^{n}\\)</span>, where <span>\\(n\\in \\mathbb {N}\\)</span>. The class of <i>n</i>-semitopological groups (<span>\\(n\\ge 2\\)</span>) contains the class of paratopological groups and Hausdorff quasi-topological groups. Fix any <span>\\(n\\in \\mathbb {N}\\)</span>. Properties of <i>n</i>-semitopological groups are studied, and questions about <i>n</i>-semitopological groups are posed. Some generalized metric properties of <i>n</i>-semitopological groups are discussed, which contains mainly results are that (1) each Hausdorff first-countable 2-semitopological group admits a coarser semi-metrizable topology; (2) each locally compact, Baire and <span>\\(\\sigma \\)</span>-compact 2-semitopological group is a topological group; (3) the condensation of some kind of 2-semitopological groups topologies are given. Finally, some cardinal invariants of <i>n</i>-semitopological groups are discussed.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00897-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A semitopological group G is said to be an n-semitopological group, if for any \(g\in G\) with \(e\not \in \overline{\{g\}}\) there is a neighborhood W of e such that \(g\not \in W^{n}\), where \(n\in \mathbb {N}\). The class of n-semitopological groups (\(n\ge 2\)) contains the class of paratopological groups and Hausdorff quasi-topological groups. Fix any \(n\in \mathbb {N}\). Properties of n-semitopological groups are studied, and questions about n-semitopological groups are posed. Some generalized metric properties of n-semitopological groups are discussed, which contains mainly results are that (1) each Hausdorff first-countable 2-semitopological group admits a coarser semi-metrizable topology; (2) each locally compact, Baire and \(\sigma \)-compact 2-semitopological group is a topological group; (3) the condensation of some kind of 2-semitopological groups topologies are given. Finally, some cardinal invariants of n-semitopological groups are discussed.

n-半拓扑群的一些广义度量性质
一个半拓扑群G被称为n-半拓扑群,如果对于任何具有\(e\not \in \overline{\{g\}}\)的\(g\in G\)存在一个邻域W (e)使得\(g\not \in W^{n}\),其中\(n\in \mathbb {N}\)。一类n-半拓扑群(\(n\ge 2\))包含一类准拓扑群和Hausdorff拟拓扑群。修复任何\(n\in \mathbb {N}\)。研究了n-半拓扑群的性质,提出了关于n-半拓扑群的一些问题。讨论了n-半拓扑群的一些广义度量性质,主要结果是:(1)每一个Hausdorff第一可数2-半拓扑群都有一个更粗的半可度量拓扑;(2)每个局部紧致,Baire和\(\sigma \) -紧致2-半拓扑群都是一个拓扑群;(3)给出了一类2-半拓扑群拓扑的缩合。最后,讨论了n-半拓扑群的一些基数不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信