Interface Performance of Untreated Dracaena trifasciata Fibers in Epoxy Composites

IF 2.3 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Larissa Queiroz Minillo, Mariana Natale Fiorelli Fabiche, Vanessa Carolina Lombardi Ambrosio, Bruno César de Castro Cardoso, Altibano Ortenzi
{"title":"Interface Performance of Untreated Dracaena trifasciata Fibers in Epoxy Composites","authors":"Larissa Queiroz Minillo,&nbsp;Mariana Natale Fiorelli Fabiche,&nbsp;Vanessa Carolina Lombardi Ambrosio,&nbsp;Bruno César de Castro Cardoso,&nbsp;Altibano Ortenzi","doi":"10.1007/s12221-025-01047-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the potential of <i>Dracaena trifasciata</i> (DT) fibers as reinforcement in epoxy composites by analyzing mechanical, thermal, and microstructural properties. Fibers underwent water-retting and drying, and were characterized via SEM and FTIR. Composites were fabricated by vacuum infusion with 55% fiber volume fraction and tested according to ASTM D638. Two epoxy systems were investigated: a rigid matrix (LY5052) and a flexible matrix (AR324). With LY5052, DT fiber incorporation led to a 101% increase in elastic modulus but caused a 26% reduction in tensile strength, attributed to stress concentration at the fiber–matrix interface and brittle matrix behavior. In contrast, composites with AR324 exhibited a 908% increase in stiffness and nearly 1000% improvement in tensile strength, enabled by superior strain compatibility between the flexible matrix and the fiber reinforcement. TGA analysis showed thermal stability above 400 °C and ~ 5% increase in residual mass due to inorganic components in DT fibers. SEM revealed predominant fiber pull-out, 40 µm voids, and resin penetration into the fiber lumen. These findings highlight the importance of matrix selection in maximizing the mechanical potential of natural fibers. DT/epoxy composites are promising for lightweight applications, particularly when paired with ductile matrices that mitigate premature failure mechanisms.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 8","pages":"3621 - 3630"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-01047-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the potential of Dracaena trifasciata (DT) fibers as reinforcement in epoxy composites by analyzing mechanical, thermal, and microstructural properties. Fibers underwent water-retting and drying, and were characterized via SEM and FTIR. Composites were fabricated by vacuum infusion with 55% fiber volume fraction and tested according to ASTM D638. Two epoxy systems were investigated: a rigid matrix (LY5052) and a flexible matrix (AR324). With LY5052, DT fiber incorporation led to a 101% increase in elastic modulus but caused a 26% reduction in tensile strength, attributed to stress concentration at the fiber–matrix interface and brittle matrix behavior. In contrast, composites with AR324 exhibited a 908% increase in stiffness and nearly 1000% improvement in tensile strength, enabled by superior strain compatibility between the flexible matrix and the fiber reinforcement. TGA analysis showed thermal stability above 400 °C and ~ 5% increase in residual mass due to inorganic components in DT fibers. SEM revealed predominant fiber pull-out, 40 µm voids, and resin penetration into the fiber lumen. These findings highlight the importance of matrix selection in maximizing the mechanical potential of natural fibers. DT/epoxy composites are promising for lightweight applications, particularly when paired with ductile matrices that mitigate premature failure mechanisms.

未处理龙葵纤维在环氧复合材料中的界面性能
本研究通过分析环氧复合材料的力学性能、热学性能和显微组织性能,评价了龙血草(DT)纤维作为环氧复合材料增强材料的潜力。纤维经过水凝和干燥处理,并通过扫描电镜和红外光谱进行表征。采用55%纤维体积分数的真空灌注法制备复合材料,并按ASTM D638进行测试。研究了两种环氧树脂体系:刚性基体(LY5052)和柔性基体(AR324)。在LY5052中,DT纤维的掺入导致弹性模量增加101%,但拉伸强度降低26%,这是由于纤维-基体界面的应力集中和脆性基体行为。相比之下,AR324复合材料的刚度增加了908%,抗拉强度提高了近1000%,这是由于柔性基体和纤维增强体之间具有良好的应变相容性。TGA分析表明,DT纤维在400℃以上具有热稳定性,并且由于无机成分的存在,DT纤维的残余质量增加了~ 5%。扫描电镜显示主要的纤维拔出,40µm的空隙,树脂渗透到纤维腔中。这些发现强调了基质选择在最大限度地发挥天然纤维的机械潜力方面的重要性。DT/环氧复合材料在轻量化应用中很有前景,特别是当与延展性基体配对时,可以减轻过早失效机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信