K2S-mediated hierarchical pore engineering in lignin-derived sulfur-enriched activated carbons for enhanced elemental mercury capture

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bingying Li, Mengen Zhong, Songlin Zuo, Debin Wang
{"title":"K2S-mediated hierarchical pore engineering in lignin-derived sulfur-enriched activated carbons for enhanced elemental mercury capture","authors":"Bingying Li,&nbsp;Mengen Zhong,&nbsp;Songlin Zuo,&nbsp;Debin Wang","doi":"10.1007/s10853-025-11494-1","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfur-functionalized porous carbons have garnered significant attention for multifunctional applications ranging from energy storage to environmental remediation. This study introduces an innovative single-step K<sub>2</sub>S activation strategy for converting renewable lignin into high-surface-area sulfur-enriched porous carbons with hierarchical porosity. The results showed that the activation parameters of K<sub>2</sub>S/lignin mass ratios (0.5:1 to 3:1) and thermal activation temperatures (600–850 °C) critically govern the resultant pore structure, sulfur content (5.0–12.5 wt%), and sulfur speciation distribution. The characterization reveals three dominant sulfur configurations: elemental (S<sup>0</sup>), thiophenic (C–S–C), and sulfonic (C–S=O) moieties, with their relative distribution being thermally modulable. Post-synthesis treatments through methanol extraction and thermal annealing (800 °C/N<sub>2</sub>) were found to effectively eliminate pore-blocking S<sup>0</sup> species while enhancing textural properties, achieving exceptional Brunauer–Emmett–Teller surface areas (2500 m<sup>2</sup> g<sup>−1</sup>) and total pore volumes (2.4 cm<sup>3</sup> g<sup>−1</sup>) at optimal conditions. This pore evolution suggests a dual mechanism where elemental sulfur acts as both a porogen and reactive intermediate during K<sub>2</sub>S activation. The optimized sulfur-containing porous carbons exhibited superior elemental mercury adsorption capacity (44 mg g<sup>−1</sup>), outperforming conventional sulfur-impregnated carbons. This work establishes K<sub>2</sub>S activation as a sustainable paradigm for fabricating hierarchically sulfur-containing porous carbons, combining renewable feedstocks with tailorable surface chemistry for advanced environmental applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 38","pages":"17492 - 17511"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11494-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfur-functionalized porous carbons have garnered significant attention for multifunctional applications ranging from energy storage to environmental remediation. This study introduces an innovative single-step K2S activation strategy for converting renewable lignin into high-surface-area sulfur-enriched porous carbons with hierarchical porosity. The results showed that the activation parameters of K2S/lignin mass ratios (0.5:1 to 3:1) and thermal activation temperatures (600–850 °C) critically govern the resultant pore structure, sulfur content (5.0–12.5 wt%), and sulfur speciation distribution. The characterization reveals three dominant sulfur configurations: elemental (S0), thiophenic (C–S–C), and sulfonic (C–S=O) moieties, with their relative distribution being thermally modulable. Post-synthesis treatments through methanol extraction and thermal annealing (800 °C/N2) were found to effectively eliminate pore-blocking S0 species while enhancing textural properties, achieving exceptional Brunauer–Emmett–Teller surface areas (2500 m2 g−1) and total pore volumes (2.4 cm3 g−1) at optimal conditions. This pore evolution suggests a dual mechanism where elemental sulfur acts as both a porogen and reactive intermediate during K2S activation. The optimized sulfur-containing porous carbons exhibited superior elemental mercury adsorption capacity (44 mg g−1), outperforming conventional sulfur-impregnated carbons. This work establishes K2S activation as a sustainable paradigm for fabricating hierarchically sulfur-containing porous carbons, combining renewable feedstocks with tailorable surface chemistry for advanced environmental applications.

Graphical abstract

Abstract Image

木质素衍生的富硫活性炭中k2s介导的分级孔工程用于增强元素汞捕获
硫功能化多孔碳在能源储存和环境修复等多功能领域的应用备受关注。本研究介绍了一种创新的单步K2S活化策略,用于将可再生木质素转化为具有分层孔隙度的高表面积富硫多孔碳。结果表明,K2S/木质素质量比的活化参数(0.5:1 ~ 3:1)和热活化温度(600 ~ 850℃)对合成孔结构、硫含量(5.0 ~ 12.5 wt%)和硫形态分布有重要影响。表征揭示了三种主要的硫构型:单质(S0)、噻吩(C-S - c)和磺酸(C-S =O)基团,它们的相对分布是热可调的。通过甲醇萃取和热退火(800°C/N2)的合成后处理,可以有效地消除孔隙堵塞的S0物质,同时增强结构性能,在最佳条件下获得卓越的brunauer - emmet - teller表面积(2500 m2 g−1)和总孔隙体积(2.4 cm3 g−1)。这种孔隙演化表明,单质硫在K2S活化过程中既是成孔剂又是反应中间体的双重机制。优化后的含硫多孔碳具有优越的单质汞吸附能力(44 mg g−1),优于传统的硫浸渍碳。这项工作建立了K2S活化作为一种可持续的范例,用于制造分层含硫多孔碳,将可再生原料与可定制的表面化学相结合,用于先进的环境应用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信