A simulation study of the impact of fracture networks on the co-production of geothermal energy and lithium

IF 3.1 2区 地球科学 Q3 ENERGY & FUELS
Shin Irgens Banshoya, Inga Berre, Eirik Keilegavlen
{"title":"A simulation study of the impact of fracture networks on the co-production of geothermal energy and lithium","authors":"Shin Irgens Banshoya,&nbsp;Inga Berre,&nbsp;Eirik Keilegavlen","doi":"10.1186/s40517-025-00356-3","DOIUrl":null,"url":null,"abstract":"<div><p>Co-production of geothermal energy and lithium is an emerging opportunity with the potential to enhance the economic potential of geothermal operations. The economic reward of extracting lithium from geothermal brine is determined by how the lithium concentration evolves during brine production. In the initial stage, production will target lithium contained in the brine resident close to the production well. While lithium recharge, in the form of rock dissolution and inflow from other parts of the reservoir, is possible, the efficiency of such recharge depends on the geology of the reservoir. In this work, we study how structural heterogeneities in the form of fractures impact the flow of lithium-carrying brine. Using a simulation tool that gives high resolution of flow and transport in fractures and the host rock, we study how the presence of fractures influences energy and lithium production. Our simulations show that, due to heat conduction and the lack of mineral recharge from the rock, differences in fracture network geometries have a much larger impact on lithium production than energy production. The simulations thus confirm that in addition to the geochemical characterisation of lithium in geothermal brines, understanding fracture characterisation and its impact on production is highly important for lithium production.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-025-00356-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-025-00356-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Co-production of geothermal energy and lithium is an emerging opportunity with the potential to enhance the economic potential of geothermal operations. The economic reward of extracting lithium from geothermal brine is determined by how the lithium concentration evolves during brine production. In the initial stage, production will target lithium contained in the brine resident close to the production well. While lithium recharge, in the form of rock dissolution and inflow from other parts of the reservoir, is possible, the efficiency of such recharge depends on the geology of the reservoir. In this work, we study how structural heterogeneities in the form of fractures impact the flow of lithium-carrying brine. Using a simulation tool that gives high resolution of flow and transport in fractures and the host rock, we study how the presence of fractures influences energy and lithium production. Our simulations show that, due to heat conduction and the lack of mineral recharge from the rock, differences in fracture network geometries have a much larger impact on lithium production than energy production. The simulations thus confirm that in addition to the geochemical characterisation of lithium in geothermal brines, understanding fracture characterisation and its impact on production is highly important for lithium production.

裂缝网络对地热能和锂联产影响的模拟研究
地热能和锂的联合生产是一个新兴的机会,有可能提高地热业务的经济潜力。从地热卤水中提取锂的经济效益取决于卤水生产过程中锂浓度的变化。在初始阶段,生产将以靠近生产井的盐水中所含的锂为目标。虽然锂可能以岩石溶解和储层其他部分流入的形式进行补给,但这种补给的效率取决于储层的地质情况。在这项工作中,我们研究了裂缝形式的结构非均质性如何影响含锂盐水的流动。利用一种模拟工具,该工具可以提供裂缝和宿主岩石中的高分辨率流动和输送,研究裂缝的存在如何影响能量和锂的生产。我们的模拟表明,由于热传导和岩石中缺乏矿物补给,裂缝网络几何形状的差异对锂产量的影响远大于能量产量。因此,模拟结果证实,除了地热盐水中锂的地球化学特征外,了解裂缝特征及其对生产的影响对锂生产非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信