Mo-Driven Photo-Fenton Catalysis: Synergistic Role of Cu and Fe in Ternary Oxide Nanoparticles for Wastewater Remediation

IF 3.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
E. Manjima, T. Raguram, Aparna Sumesh, Vishnu Narayanan, K. S. Rajni, Muthukumar Rajamanickam
{"title":"Mo-Driven Photo-Fenton Catalysis: Synergistic Role of Cu and Fe in Ternary Oxide Nanoparticles for Wastewater Remediation","authors":"E. Manjima,&nbsp;T. Raguram,&nbsp;Aparna Sumesh,&nbsp;Vishnu Narayanan,&nbsp;K. S. Rajni,&nbsp;Muthukumar Rajamanickam","doi":"10.1007/s10876-025-02872-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, Mo-based transition metal oxide nanoparticles MoO<sub>3</sub> (MO), CuMoO<sub>4</sub> (CMO), FeMoO<sub>4</sub> (FMO), and Cu<sub>1.815</sub>Fe<sub>1.815</sub>Mo<sub>3</sub>O<sub>12</sub> (CFMO) were synthesized via a sol-gel technique. Further, evaluated for their photo-Fenton dye degradation performance against Methylene Blue dye under visible light irradiation using H<sub>2</sub>O<sub>2</sub> as an oxidant. Structural, optical, morphological, and surface analyses confirmed the formation of pure-phase nanoparticles with flake-like morphology and tunable band gaps. Optical band gap values decreased from 2.93 eV (MoO<sub>3</sub>) to 1.68-1.80 eV for ternary Cu<sub>1.815</sub>Fe<sub>1.815</sub>Mo<sub>3</sub>O<sub>12</sub>, enhancing visible light absorption. Among all, the ternary oxide with 0.1 M Mo exhibited the highest degradation efficiency of 97.6% within 60 minutes, outperforming the binary (CMO<sub>4</sub>: 97.1%, FMO<sub>4</sub>: 94.1%) and primary (MoO<sub>3</sub>: 98.1% in 180 min) systems. Kinetic studies confirmed first-order degradation behavior with the highest rate constant of 5.9 × 10<sup>-2</sup> min<sup>-1</sup> and shortest half-life of 11.7 minutes for the optimal ternary catalyst. Scavenger experiments further revealed that hydroxyl radicals (•OH) are the dominant reactive species, with moderate contributions from superoxide radicals (•O<sub>2</sub><sup>-</sup>) and photogenerated holes (h<sup>+</sup>). The CFMO nanoparticles also retained their catalytic activity after five consecutive cycles, indicating excellent reusability. These findings demonstrate the promising potential of Mo-incorporated ternary oxide nanoparticles as efficient, cost-effective, and recyclable photo-Fenton catalysts for environmental wastewater remediation.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02872-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Mo-based transition metal oxide nanoparticles MoO3 (MO), CuMoO4 (CMO), FeMoO4 (FMO), and Cu1.815Fe1.815Mo3O12 (CFMO) were synthesized via a sol-gel technique. Further, evaluated for their photo-Fenton dye degradation performance against Methylene Blue dye under visible light irradiation using H2O2 as an oxidant. Structural, optical, morphological, and surface analyses confirmed the formation of pure-phase nanoparticles with flake-like morphology and tunable band gaps. Optical band gap values decreased from 2.93 eV (MoO3) to 1.68-1.80 eV for ternary Cu1.815Fe1.815Mo3O12, enhancing visible light absorption. Among all, the ternary oxide with 0.1 M Mo exhibited the highest degradation efficiency of 97.6% within 60 minutes, outperforming the binary (CMO4: 97.1%, FMO4: 94.1%) and primary (MoO3: 98.1% in 180 min) systems. Kinetic studies confirmed first-order degradation behavior with the highest rate constant of 5.9 × 10-2 min-1 and shortest half-life of 11.7 minutes for the optimal ternary catalyst. Scavenger experiments further revealed that hydroxyl radicals (•OH) are the dominant reactive species, with moderate contributions from superoxide radicals (•O2-) and photogenerated holes (h+). The CFMO nanoparticles also retained their catalytic activity after five consecutive cycles, indicating excellent reusability. These findings demonstrate the promising potential of Mo-incorporated ternary oxide nanoparticles as efficient, cost-effective, and recyclable photo-Fenton catalysts for environmental wastewater remediation.

Abstract Image

钼驱动光fenton催化:Cu和Fe在三元氧化纳米颗粒废水修复中的协同作用
本研究采用溶胶-凝胶法制备了MO基过渡金属氧化物纳米粒子MoO3 (MO)、CuMoO4 (CMO)、FeMoO4 (FMO)和Cu1.815Fe1.815Mo3O12 (CFMO)。在可见光照射下,以H2O2为氧化剂,评价了它们对亚甲基蓝染料的降解性能。结构、光学、形态学和表面分析证实形成了具有片状形态和可调带隙的纯相纳米颗粒。Cu1.815Fe1.815Mo3O12的光学带隙值从2.93 eV (MoO3)降低到1.68 ~ 1.80 eV,增强了可见光吸收。其中,含有0.1 M Mo的三元氧化物在60 min内的降解效率最高,达到97.6%,优于二元体系(CMO4: 97.1%, FMO4: 94.1%)和一次体系(MoO3: 98.1%)。动力学研究证实了最佳三元催化剂的一级降解行为,其最高速率常数为5.9 × 10-2 min-1,半衰期最短为11.7 min。清道夫实验进一步表明,羟基自由基(•OH)是主要的活性物质,超氧自由基(•O2-)和光生空穴(h+)也有一定贡献。CFMO纳米颗粒在连续5次循环后仍保持其催化活性,表明其具有良好的可重复使用性。这些发现表明,含钼的三元氧化纳米颗粒作为一种高效、经济、可回收的光- fenton催化剂,具有良好的环境废水修复潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信