Comparative Study of Epoxy-Wollastonite Composites and Sn55PbAgSb Solder for Helium Cooling Channels in Toroidal Field Coil Casings

IF 2.1 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Hu Wang, Chao Fang, Zhengbao Yu, Yong Xiao, Shuangsong Du, Yinbin Lv, Jing Huang, Jin Liu, Aofeng Shi, Xiaoyu Dong, Jing Wei, Weihua Wang, Wei Lu, Xiaowu Yu
{"title":"Comparative Study of Epoxy-Wollastonite Composites and Sn55PbAgSb Solder for Helium Cooling Channels in Toroidal Field Coil Casings","authors":"Hu Wang,&nbsp;Chao Fang,&nbsp;Zhengbao Yu,&nbsp;Yong Xiao,&nbsp;Shuangsong Du,&nbsp;Yinbin Lv,&nbsp;Jing Huang,&nbsp;Jin Liu,&nbsp;Aofeng Shi,&nbsp;Xiaoyu Dong,&nbsp;Jing Wei,&nbsp;Weihua Wang,&nbsp;Wei Lu,&nbsp;Xiaowu Yu","doi":"10.1007/s10894-025-00501-7","DOIUrl":null,"url":null,"abstract":"<div><p>To address the thermal management challenges under extreme operational conditions of tokamak toroidal field (TF) magnets, this study systematically compared the cryogenic performance of epoxy-wollastonite composites (EWC) implemented in ITER and Sn<sub>55</sub>PbAgSb solder (SPAS) applied in EAST for helium cooling channels, based on the Comprehensive Research Facility for Fusion Technology (CRAFT) TF coil casing. Through finite element heat transfer modeling at 4.2 K with heat flux ranging from 1 W/m²to 30 W/m², the results demonstrate that cooling channels fabricated with SPAS solder exhibit a 2.12–5.32% reduction in the average cold-side temperature (<i>T</i><sub>cs</sub>) compared to EWC, with the performance gap narrowing to 0.23% at ultra-low heat flux conditions (1 W/m²). The mechanical testing under 77 K cryogenic conditions demonstrates superior crush resistance in EWC (no defects at 400 kN) compared to solder-based counterparts (crack initiation observed at 200 kN). The findings establish a material selection protocol: SPAS is optimal for high heat flux regions to enhance thermal dissipation, while EWC is preferred in mechanically critical zones to ensure structural integrity. These results offer actionable engineering guidelines, balancing thermal efficiency and mechanical robustness for future fusion reactors.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00501-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the thermal management challenges under extreme operational conditions of tokamak toroidal field (TF) magnets, this study systematically compared the cryogenic performance of epoxy-wollastonite composites (EWC) implemented in ITER and Sn55PbAgSb solder (SPAS) applied in EAST for helium cooling channels, based on the Comprehensive Research Facility for Fusion Technology (CRAFT) TF coil casing. Through finite element heat transfer modeling at 4.2 K with heat flux ranging from 1 W/m²to 30 W/m², the results demonstrate that cooling channels fabricated with SPAS solder exhibit a 2.12–5.32% reduction in the average cold-side temperature (Tcs) compared to EWC, with the performance gap narrowing to 0.23% at ultra-low heat flux conditions (1 W/m²). The mechanical testing under 77 K cryogenic conditions demonstrates superior crush resistance in EWC (no defects at 400 kN) compared to solder-based counterparts (crack initiation observed at 200 kN). The findings establish a material selection protocol: SPAS is optimal for high heat flux regions to enhance thermal dissipation, while EWC is preferred in mechanically critical zones to ensure structural integrity. These results offer actionable engineering guidelines, balancing thermal efficiency and mechanical robustness for future fusion reactors.

环氧硅灰石复合材料与Sn55PbAgSb焊料用于环形磁场线圈套管氦冷却通道的比较研究
为了解决托卡马克环形磁场(TF)磁体在极端运行条件下的热管理挑战,本研究系统地比较了ITER中使用的环氧硅灰石复合材料(EWC)和EAST中使用的Sn55PbAgSb焊料(SPAS)的低温性能,基于聚变技术综合研究设施(CRAFT) TF线圈外壳。通过对热流密度为1 W/m²~ 30 W/m²的4.2 K条件下的有限元传热建模,结果表明,与EWC相比,采用SPAS焊料制备的冷却通道的平均冷侧温度(Tcs)降低了2.12 ~ 5.32%,在超低热流密度条件下(1 W/m²),其性能差距缩小至0.23%。在77 K低温条件下的力学测试表明,与基于焊料的材料(在200 kN时观察到裂纹萌生)相比,EWC具有更好的抗压性(在400 kN时无缺陷)。研究结果建立了一种材料选择方案:SPAS是高热流密度区域的最佳材料,以增强散热,而EWC是机械关键区域的首选材料,以确保结构完整性。这些结果提供了可操作的工程指导方针,平衡热效率和机械稳健性为未来的聚变反应堆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信