Tauseef Anwar, Huma Qureshi, Sheraz Gull, Zahoor Ahmad, Ejaz Hussain Siddiqi, Naimat Ullah, Muhammad Tahir Naseem, Muneera A. Saleh, Khalid H. Alamer, Lala Gurbanova
{"title":"Silicon Nanoparticles Enhance Arsenic Stress Tolerance in Cicer arietinum L. through Physiological and Biochemical Modulation","authors":"Tauseef Anwar, Huma Qureshi, Sheraz Gull, Zahoor Ahmad, Ejaz Hussain Siddiqi, Naimat Ullah, Muhammad Tahir Naseem, Muneera A. Saleh, Khalid H. Alamer, Lala Gurbanova","doi":"10.1007/s12633-025-03369-6","DOIUrl":null,"url":null,"abstract":"<div><p>Arsenic contamination poses a significant threat to agricultural productivity and food security, especially in <i>Cicer arietinum</i> L. (chickpea). This study evaluates the potential of silicon nanoparticles (SiNPs) to mitigate arsenic stress in <i>C. arietinum</i> (Noor 2022). The experiment was conducted at The Islamia University of Bahawalpur using a randomized complete block design (RCBD) with a factorial arrangement and three replications. A pot experiment was conducted using seven treatments comprising various concentrations of SiNPs applied alone or combined with arsenic [T0 (control, no SiNPs), T1 (3.5% SiNPs), T2 (7% SiNPs), T3 (10.5% SiNPs), T4 (3.5% SiNPs + 30 ppm Ar), T5 (7% SiNPs + 30 ppm Ar), and T6 (10.5% SiNPs + 30 ppm Ar)]. SiNPs were applied as foliar sprays in three splits from the second to fourth weeks after sowing. Morphological, physiological, and biochemical parameters were assessed, including chlorophyll content, total soluble proteins, proline, and antioxidant enzyme activities. The results demonstrated that SiNPs significantly enhanced stress tolerance in chickpea plants. At 10.5% SiNPs, chlorophyll content increased by 35%, carotenoids by 42%, and proline by 68% compared to arsenic-stressed plants without SiNPs, indicating improved photosynthetic efficiency and osmotic adjustment. Antioxidant enzyme activities, including peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), increased by 50%, 47%, and 53%, respectively, mitigating oxidative damage. Soluble sugars and phenolic content also rose by 28% and 32%, respectively, under 10.5% SiNPs. However, when combined with arsenic, some antagonistic effects were observed, with a slight decrease in chlorophyll and antioxidant activity compared to SiNPs alone. These findings suggest that SiNPs are a promising tool for improving crop resilience in arsenic-contaminated soils, offering insights into sustainable agricultural practices. Further research is warranted to explore long-term impacts and optimize application strategies.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 11","pages":"2545 - 2558"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-025-03369-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic contamination poses a significant threat to agricultural productivity and food security, especially in Cicer arietinum L. (chickpea). This study evaluates the potential of silicon nanoparticles (SiNPs) to mitigate arsenic stress in C. arietinum (Noor 2022). The experiment was conducted at The Islamia University of Bahawalpur using a randomized complete block design (RCBD) with a factorial arrangement and three replications. A pot experiment was conducted using seven treatments comprising various concentrations of SiNPs applied alone or combined with arsenic [T0 (control, no SiNPs), T1 (3.5% SiNPs), T2 (7% SiNPs), T3 (10.5% SiNPs), T4 (3.5% SiNPs + 30 ppm Ar), T5 (7% SiNPs + 30 ppm Ar), and T6 (10.5% SiNPs + 30 ppm Ar)]. SiNPs were applied as foliar sprays in three splits from the second to fourth weeks after sowing. Morphological, physiological, and biochemical parameters were assessed, including chlorophyll content, total soluble proteins, proline, and antioxidant enzyme activities. The results demonstrated that SiNPs significantly enhanced stress tolerance in chickpea plants. At 10.5% SiNPs, chlorophyll content increased by 35%, carotenoids by 42%, and proline by 68% compared to arsenic-stressed plants without SiNPs, indicating improved photosynthetic efficiency and osmotic adjustment. Antioxidant enzyme activities, including peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), increased by 50%, 47%, and 53%, respectively, mitigating oxidative damage. Soluble sugars and phenolic content also rose by 28% and 32%, respectively, under 10.5% SiNPs. However, when combined with arsenic, some antagonistic effects were observed, with a slight decrease in chlorophyll and antioxidant activity compared to SiNPs alone. These findings suggest that SiNPs are a promising tool for improving crop resilience in arsenic-contaminated soils, offering insights into sustainable agricultural practices. Further research is warranted to explore long-term impacts and optimize application strategies.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.