{"title":"Seismic microzonation in Bengkulu City, Indonesia: insights for resilient planning after 2000 Mw 7.9 and 2007 Mw 8.4 earthquakes","authors":"Refrizon, Darmawan Ikhlas Fadli, Erlan Sumanjaya, Ayu Maulidiyah, Meno Hardianza, Debi Hardiansyah","doi":"10.1007/s10518-025-02168-z","DOIUrl":null,"url":null,"abstract":"<div><p>Bengkulu city, located in the western part of Sumatra, is characterized by the prevalence of alluvial deposits. In certain areas, local site effects on soft alluvial sediments such as clay, sand, silt, mud, and gravel can amplify ground movements caused by significant seismic waves. Consequently, a comprehensive site effect study was conducted with closer measurement points to establish a more detailed seismic microzonation. In order to evaluate how the soil reacts to seismic activity, the HVSR method is performed to analyze the ambient soil noise within the study area. Field measurements reveal variations in the predominant frequency (ranging from 0.4 to 16.5 Hz), HVSR amplification (ranging from 0.3 to 12.3), and <i>K</i><sub><i>g</i></sub> distribution (ranging from 0.02 to 239.26), respectively. Furthermore, the PGA Kanai method was utilized to estimate soil shear strain (GSS) in the study area, using data from the 2000 Bengkulu-Enggano Earthquake (Mw 7.9) and the 2007 Bengkulu-Mentawai Earthquake (Mw 8.4). The analysis indicated a consistent distribution of <i>K</i><sub><i>g</i></sub> values with GSS and PGA values, alongside Modified Mercalli Intensity (MMI) values, exhibiting correlation coefficients greater than 0.9. This suggests that Bengkulu City faces a moderate to high vulnerability to severe damage from earthquakes. The closer examination of HVSR data at finer measurement points aids in identifying exposure to new hazards and contributes valuable insights for formulating regional planning policies centered on disaster risk reduction and enhancing existing strategies in Bengkulu City.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 8","pages":"3085 - 3107"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02168-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bengkulu city, located in the western part of Sumatra, is characterized by the prevalence of alluvial deposits. In certain areas, local site effects on soft alluvial sediments such as clay, sand, silt, mud, and gravel can amplify ground movements caused by significant seismic waves. Consequently, a comprehensive site effect study was conducted with closer measurement points to establish a more detailed seismic microzonation. In order to evaluate how the soil reacts to seismic activity, the HVSR method is performed to analyze the ambient soil noise within the study area. Field measurements reveal variations in the predominant frequency (ranging from 0.4 to 16.5 Hz), HVSR amplification (ranging from 0.3 to 12.3), and Kg distribution (ranging from 0.02 to 239.26), respectively. Furthermore, the PGA Kanai method was utilized to estimate soil shear strain (GSS) in the study area, using data from the 2000 Bengkulu-Enggano Earthquake (Mw 7.9) and the 2007 Bengkulu-Mentawai Earthquake (Mw 8.4). The analysis indicated a consistent distribution of Kg values with GSS and PGA values, alongside Modified Mercalli Intensity (MMI) values, exhibiting correlation coefficients greater than 0.9. This suggests that Bengkulu City faces a moderate to high vulnerability to severe damage from earthquakes. The closer examination of HVSR data at finer measurement points aids in identifying exposure to new hazards and contributes valuable insights for formulating regional planning policies centered on disaster risk reduction and enhancing existing strategies in Bengkulu City.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.