Optimized Mn doped ZnO@rGO nanocomposites: a breakthrough for advanced energy storage and PEC systems

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-06-16 DOI:10.1007/s11581-025-06468-x
Zarina Ansari, Suresh Kadam, Sujata Kasabe, Jenis Tripathi, Pramod Agale, Sunil Patange, Paresh More
{"title":"Optimized Mn doped ZnO@rGO nanocomposites: a breakthrough for advanced energy storage and PEC systems","authors":"Zarina Ansari,&nbsp;Suresh Kadam,&nbsp;Sujata Kasabe,&nbsp;Jenis Tripathi,&nbsp;Pramod Agale,&nbsp;Sunil Patange,&nbsp;Paresh More","doi":"10.1007/s11581-025-06468-x","DOIUrl":null,"url":null,"abstract":"<div><p>Pristine ZnO and Mn doped ZnO (Mn-ZnO) were synthesized by sol–gel auto-combustion method. Three different concentrations of Mn-ZnO (1%, 5%, and 10%) were treated with rGO in hydrothermal reactor to obtained (1%, 5%, and 10%) Mn-ZnO@rGO nanocomposites. X-ray diffraction (XRD) pattern confirmed the successful incorporation of Mn into the ZnO lattice and the formation of Mn-ZnO@rGO nanocomposites. The peak at 2θ = 25.16° signifies the presence of reduced graphene oxide (rGO) thus confirmed formation of Mn-ZnO@rGO nanocomposite. Rietveld refined pattern showed that all the samples are pure with wurtzite structure. The Fourier-transform infrared (FTIR) spectroscopy revealed the presence of metal–oxygen bonds and functional groups within the composites. The stretching vibration of ZnO at 464 cm<sup>−1</sup> confirmed the wurtzite structure. The peak at 600 cm<sup>−1</sup> and 880 cm<sup>−1</sup> assigned for vibrational, antisymmetric stretching mode of MnO and Mn–O respectively. Significant peaks at 1080 cm<sup>−1</sup> and 1392 cm<sup>−1</sup> are due to C-O stretching vibrations from C–O–C bonds and C–OH bending vibrations, respectively. The peak at 1432 cm<sup>−1</sup> indicates the -C = O group stretching vibration from inorganic carbonate species. The peak at 2850 cm<sup>−1</sup> corresponds to the symmetrical stretching vibration of the C-H group. FTIR analysis confirmed formation of Mn-ZnO@rGO nanocomposite. Field emission scanning electron microscopy (FESEM) images demonstrate a high density of irregularly sized nanoparticles, confirming the effective deposition of Mn-ZnO nanoparticles on to rGO sheets and the robust binding of these nanoparticles, resulting in Mn-ZnO@rGO nanocomposites. X-ray photoelectron spectroscopy (XPS) provided detailed insights into the oxidation states of the elements with a focus on 5% Mn-ZnO@rGO nano composite. The survey spectrum for the 5% Mn-ZnO@rGO nanocomposite confirmed the presence of Zn, Mn, O, and C. The lack of contaminants peaks in the XPS analysis supports the successful synthesis of Mn-ZnO@rGO nanocomposite. Raman spectroscopy detected vibrational modes between 1300 cm⁻<sup>1</sup> and 1600 cm⁻<sup>1</sup>, which are characteristic of rGO and Mn-ZnO@rGO nanocomposites. There is increase in the D band and G band intensity ratio (ID/IG), and this confirms the disorder in the carbon components. It further confirmed that during the Mn-ZnO@rGO composite's formation, GO was converted to rGO. Electrochemical performance, assessed through Electrochemical Impedance Spectroscopy (EIS), Galvanostatic Charge–Discharge (GCD), and Cyclic Voltammetry (CV). Long-term cycling stability over 5000 cycles indicated that 5% Mn-ZnO@rGO nanocomposite exhibited superior performance compared to 1% and 10% counterparts. Additionally, photoelectrochemical cell (PEC) measurements further validated the exceptional performance of the 5% Mn-ZnO@rGO nanocomposite. These findings demonstrate that the 5% Mn-ZnO@rGO nanocomposite is a highly promising material for supercapacitor and PEC applications.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 8","pages":"8151 - 8172"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06468-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pristine ZnO and Mn doped ZnO (Mn-ZnO) were synthesized by sol–gel auto-combustion method. Three different concentrations of Mn-ZnO (1%, 5%, and 10%) were treated with rGO in hydrothermal reactor to obtained (1%, 5%, and 10%) Mn-ZnO@rGO nanocomposites. X-ray diffraction (XRD) pattern confirmed the successful incorporation of Mn into the ZnO lattice and the formation of Mn-ZnO@rGO nanocomposites. The peak at 2θ = 25.16° signifies the presence of reduced graphene oxide (rGO) thus confirmed formation of Mn-ZnO@rGO nanocomposite. Rietveld refined pattern showed that all the samples are pure with wurtzite structure. The Fourier-transform infrared (FTIR) spectroscopy revealed the presence of metal–oxygen bonds and functional groups within the composites. The stretching vibration of ZnO at 464 cm−1 confirmed the wurtzite structure. The peak at 600 cm−1 and 880 cm−1 assigned for vibrational, antisymmetric stretching mode of MnO and Mn–O respectively. Significant peaks at 1080 cm−1 and 1392 cm−1 are due to C-O stretching vibrations from C–O–C bonds and C–OH bending vibrations, respectively. The peak at 1432 cm−1 indicates the -C = O group stretching vibration from inorganic carbonate species. The peak at 2850 cm−1 corresponds to the symmetrical stretching vibration of the C-H group. FTIR analysis confirmed formation of Mn-ZnO@rGO nanocomposite. Field emission scanning electron microscopy (FESEM) images demonstrate a high density of irregularly sized nanoparticles, confirming the effective deposition of Mn-ZnO nanoparticles on to rGO sheets and the robust binding of these nanoparticles, resulting in Mn-ZnO@rGO nanocomposites. X-ray photoelectron spectroscopy (XPS) provided detailed insights into the oxidation states of the elements with a focus on 5% Mn-ZnO@rGO nano composite. The survey spectrum for the 5% Mn-ZnO@rGO nanocomposite confirmed the presence of Zn, Mn, O, and C. The lack of contaminants peaks in the XPS analysis supports the successful synthesis of Mn-ZnO@rGO nanocomposite. Raman spectroscopy detected vibrational modes between 1300 cm⁻1 and 1600 cm⁻1, which are characteristic of rGO and Mn-ZnO@rGO nanocomposites. There is increase in the D band and G band intensity ratio (ID/IG), and this confirms the disorder in the carbon components. It further confirmed that during the Mn-ZnO@rGO composite's formation, GO was converted to rGO. Electrochemical performance, assessed through Electrochemical Impedance Spectroscopy (EIS), Galvanostatic Charge–Discharge (GCD), and Cyclic Voltammetry (CV). Long-term cycling stability over 5000 cycles indicated that 5% Mn-ZnO@rGO nanocomposite exhibited superior performance compared to 1% and 10% counterparts. Additionally, photoelectrochemical cell (PEC) measurements further validated the exceptional performance of the 5% Mn-ZnO@rGO nanocomposite. These findings demonstrate that the 5% Mn-ZnO@rGO nanocomposite is a highly promising material for supercapacitor and PEC applications.

Abstract Image

优化Mn掺杂ZnO@rGO纳米复合材料:先进储能和PEC系统的突破
采用溶胶-凝胶自燃烧法合成了纯净ZnO和Mn掺杂ZnO (Mn-ZnO)。用还原氧化石墨烯在水热反应器中处理三种不同浓度的Mn-ZnO(1%、5%和10%),得到(1%、5%和10%)Mn-ZnO@rGO纳米复合材料。x射线衍射(XRD)图证实Mn成功掺入ZnO晶格并形成Mn-ZnO@rGO纳米复合材料。在2θ = 25.16°处的峰表示还原氧化石墨烯(rGO)的存在,从而证实了Mn-ZnO@rGO纳米复合材料的形成。Rietveld细化图样表明所有样品均为纯纤锌矿结构。傅里叶变换红外光谱(FTIR)显示复合材料中存在金属-氧键和官能团。ZnO在464 cm−1处的拉伸振动证实了其纤锌矿结构。在600 cm−1和880 cm−1处的峰值分别属于MnO和Mn-O的振动、反对称拉伸模式。在1080 cm−1和1392 cm−1处的显著峰分别是由C-O - c键的C-O拉伸振动和C-OH弯曲振动引起的。1432 cm−1处的峰表示来自无机碳酸盐的c = O基团拉伸振动。2850 cm−1处的峰对应于C-H基团的对称伸缩振动。FTIR分析证实了Mn-ZnO@rGO纳米复合材料的形成。场发射扫描电镜(FESEM)图像显示了高密度的不规则尺寸纳米颗粒,证实了Mn-ZnO纳米颗粒在还原氧化石墨烯薄片上的有效沉积以及这些纳米颗粒的牢固结合,从而产生Mn-ZnO@rGO纳米复合材料。x射线光电子能谱(XPS)提供了对元素氧化态的详细了解,重点是5% Mn-ZnO@rGO纳米复合材料。5% Mn-ZnO@rGO纳米复合材料的调查光谱证实了Zn, Mn, O和c的存在。XPS分析中没有污染物峰,支持Mn-ZnO@rGO纳米复合材料的成功合成。拉曼光谱检测到1300 cm - 1600 cm - 1之间的振动模式,这是氧化石墨烯和Mn-ZnO@rGO纳米复合材料的特征。D带和G带强度比(ID/IG)增加,证实了碳组分的无序性。它进一步证实,在Mn-ZnO@rGO复合材料的形成过程中,氧化石墨烯被转化为还原氧化石墨烯。电化学性能通过电化学阻抗谱(EIS)、恒流充放电(GCD)和循环伏安法(CV)进行评估。5000次以上的长期循环稳定性表明,5% Mn-ZnO@rGO纳米复合材料的性能优于1%和10%的纳米复合材料。此外,光电化学电池(PEC)测量进一步验证了5% Mn-ZnO@rGO纳米复合材料的卓越性能。这些发现表明,5% Mn-ZnO@rGO纳米复合材料是一种非常有前途的超级电容器和PEC应用材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信