Optimized plasma-synthesized silicon anodes for high-performance lithium-ion batteries

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jing Peng, Zheng Lin, Yongyi Li, Shuaibo Zeng, LingZhu Yang, Zixing He, Junqi Wang, Jingrun Gong, Weiqi Chen, Yanfeng Ni, Chang Liu, Zhixuan Chen, Liangbin Xiong
{"title":"Optimized plasma-synthesized silicon anodes for high-performance lithium-ion batteries","authors":"Jing Peng,&nbsp;Zheng Lin,&nbsp;Yongyi Li,&nbsp;Shuaibo Zeng,&nbsp;LingZhu Yang,&nbsp;Zixing He,&nbsp;Junqi Wang,&nbsp;Jingrun Gong,&nbsp;Weiqi Chen,&nbsp;Yanfeng Ni,&nbsp;Chang Liu,&nbsp;Zhixuan Chen,&nbsp;Liangbin Xiong","doi":"10.1007/s10853-025-11483-4","DOIUrl":null,"url":null,"abstract":"<div><p>The exceptional lithium-ion storage capacity of silicon positions it as a promising material for high-energy–density battery systems. Our research investigates the synthesis and evaluation of three silicon-based anode materials (PF-Si: Plasma-synthesized and Fine-sieved Silicon; PC-Si: Plasma-synthesized and Coarse-sieved Silicon; MC-Si: Mechanically Crushed Silicon) for lithium-ion battery applications. PF-Si fabricated through plasma-assisted synthesis under optimized conditions and sieved to a median particle size of 30–50 nm, which demonstrates exceptional structural integrity and electrochemical behavior. Firstly, XRD and Raman analyses demonstrate that PF-Si exhibits superior crystallinity, which directly facilitates efficient lithium-ion intercalation and optimizes charge transfer kinetics. Secondly, nitrogen adsorption–desorption isotherms revealed a uniform mesoporous architecture with 3–5 nm pores, the structural advantage that enables rapid electrolyte infiltration while minimizing ionic diffusion resistance. Most notably, electrochemical evaluations highlight the PF-Si anode’s exceptional performance. It delivers a specific capacity of 1107.5 mAh/g at 0.1 A/g, sustains 100.57% Coulombic efficiency over 75 cycles, and retains 68.69% capacity after 75 cycles. These findings collectively underscore the transformative potential of plasma-assisted morphological engineering in silicon anode design.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 38","pages":"17769 - 17780"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11483-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exceptional lithium-ion storage capacity of silicon positions it as a promising material for high-energy–density battery systems. Our research investigates the synthesis and evaluation of three silicon-based anode materials (PF-Si: Plasma-synthesized and Fine-sieved Silicon; PC-Si: Plasma-synthesized and Coarse-sieved Silicon; MC-Si: Mechanically Crushed Silicon) for lithium-ion battery applications. PF-Si fabricated through plasma-assisted synthesis under optimized conditions and sieved to a median particle size of 30–50 nm, which demonstrates exceptional structural integrity and electrochemical behavior. Firstly, XRD and Raman analyses demonstrate that PF-Si exhibits superior crystallinity, which directly facilitates efficient lithium-ion intercalation and optimizes charge transfer kinetics. Secondly, nitrogen adsorption–desorption isotherms revealed a uniform mesoporous architecture with 3–5 nm pores, the structural advantage that enables rapid electrolyte infiltration while minimizing ionic diffusion resistance. Most notably, electrochemical evaluations highlight the PF-Si anode’s exceptional performance. It delivers a specific capacity of 1107.5 mAh/g at 0.1 A/g, sustains 100.57% Coulombic efficiency over 75 cycles, and retains 68.69% capacity after 75 cycles. These findings collectively underscore the transformative potential of plasma-assisted morphological engineering in silicon anode design.

Graphical abstract

用于高性能锂离子电池的优化等离子体合成硅阳极
硅优异的锂离子存储能力使其成为高能量密度电池系统的有前途的材料。我们研究了三种硅基负极材料(PF-Si:等离子体合成和细筛硅;PC-Si:等离子体合成和粗筛硅;MC-Si:机械破碎硅)的合成和评价,用于锂离子电池的应用。在优化的条件下,通过等离子体辅助合成制备了PF-Si,并筛选到30-50 nm的中位粒径,具有优异的结构完整性和电化学性能。首先,XRD和Raman分析表明,PF-Si具有优异的结晶度,直接促进了锂离子的高效插层,优化了电荷转移动力学。其次,氮吸附-解吸等温线显示出均匀的介孔结构,具有3-5 nm的孔,这种结构优势可以实现快速电解质渗透,同时最大限度地减少离子扩散阻力。最值得注意的是,电化学评估突出了PF-Si阳极的卓越性能。该电池在0.1 a /g电流下的比容量为1107.5 mAh/g, 75次循环后库仑效率保持在100.57%,75次循环后容量保持在68.69%。这些发现共同强调了等离子体辅助形态工程在硅阳极设计中的变革潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信