Sensitive and selective detection of 4-nitrophenol using a zirconium metal–organic framework loaded reduced graphene oxide modified glassy carbon electrode
{"title":"Sensitive and selective detection of 4-nitrophenol using a zirconium metal–organic framework loaded reduced graphene oxide modified glassy carbon electrode","authors":"Nishanthi Vasanthi Sridharan, Badal Kumar Mandal","doi":"10.1007/s10008-025-06257-6","DOIUrl":null,"url":null,"abstract":"<div><p>Phenolic compounds in water bodies pose significant threats to humans, animals and aquatic life. A new electrochemical sensor has been developed for the sensitive and selective detection of 4-nitrophenol (4-NP), utilizing the incorporation of zirconium metal–organic framework (UiO-66-NH<sub>2</sub>) and reduced graphene oxide (rGO). The UiO-66-NH<sub>2</sub>/rGO electrocatalyst was synthesized by the solvothermal method using zirconium oxychloride octahydrate, 2-amino terephthalic acid and rGO. Various characterization techniques including — X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field-emission scanning electron microscopy (FESEM), UV–visible diffuse reflectance spectroscopy (UV-DRS), Raman spectroscopy and cyclic voltammetry (CV) were employed to analyze the physical properties, morphology, and electrochemical performance of the prepared materials. The resulting UiO-66-NH<sub>2</sub>/rGO/GCE electrode demonstrates effective electrocatalytic activity for the cathodic reduction of 4-NP due to its high porosity, favourable electron transfer kinetics and enhanced sensitivity. Differential pulse voltammetry reveals a linear response for 4-NP concentrations ranging from 0.5 to 100 μM, with a high sensitivity of 0.1 μA/μM and a low detection limit of 15 nM. Additionally, the sensor showcases several advantages, including anti-interference ability, selectivity for 4-NP in the presence of other interfering species, strong repeatability and stability. The developed sensor was successfully tested for practical applications in river water samples. </p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 9","pages":"3843 - 3858"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06257-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenolic compounds in water bodies pose significant threats to humans, animals and aquatic life. A new electrochemical sensor has been developed for the sensitive and selective detection of 4-nitrophenol (4-NP), utilizing the incorporation of zirconium metal–organic framework (UiO-66-NH2) and reduced graphene oxide (rGO). The UiO-66-NH2/rGO electrocatalyst was synthesized by the solvothermal method using zirconium oxychloride octahydrate, 2-amino terephthalic acid and rGO. Various characterization techniques including — X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field-emission scanning electron microscopy (FESEM), UV–visible diffuse reflectance spectroscopy (UV-DRS), Raman spectroscopy and cyclic voltammetry (CV) were employed to analyze the physical properties, morphology, and electrochemical performance of the prepared materials. The resulting UiO-66-NH2/rGO/GCE electrode demonstrates effective electrocatalytic activity for the cathodic reduction of 4-NP due to its high porosity, favourable electron transfer kinetics and enhanced sensitivity. Differential pulse voltammetry reveals a linear response for 4-NP concentrations ranging from 0.5 to 100 μM, with a high sensitivity of 0.1 μA/μM and a low detection limit of 15 nM. Additionally, the sensor showcases several advantages, including anti-interference ability, selectivity for 4-NP in the presence of other interfering species, strong repeatability and stability. The developed sensor was successfully tested for practical applications in river water samples.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.