{"title":"Antimicrobial potential of polymer-based bio-nanocomposites using infrared thermography and molecular Insilico of SnO2 against pathogens","authors":"Bashaer S. Faris, Basaad H. Hamza, Ahmed N. Abd","doi":"10.1007/s13204-025-03107-9","DOIUrl":null,"url":null,"abstract":"<div><p>The use of green synthesis allowed for the creation of nanocomposite samples utilizing celery extract. PMMA was dissolved in acetone and then added to the synthesized SnO<sub>2</sub> at concentrations of 25%, 50%, 75%, and 100% µl. This was done after the SnO<sub>2</sub> was the result of the synthesis process. The names S1, S2, S3, and S4 have been assigned to these concentrations. Bio nanoparticles/polymer nanocomposite measurements employing X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), and the Fourier transform infrared (FTIR) showed that the fourth concentration (S4) had the highest antibacterial activity, making it the most effective formulation. XRD reveals the tetragonal rutile phase structure in SnO<sub>2</sub> nanoparticles prepared by green synthesis method. The agglomeration effect and particle sizes cause this. TEM showed nanoparticles dispersed throughout the polymer with occasional agglomerations. Nanoscale dispersion was evident in the average particle size of 16.89 nm. FTIR study showed no chemical interaction because no new peaks formed and both SnO<sub>2</sub> and PMMA’s distinctive peaks remained constant. This implies that the compounds did not collide. The fact that the polymer was not dissolved in the SnO<sub>2</sub> is demonstrated by this fact, indicating that the mixing was entirely physical, as the SnO<sub>2</sub> peak at 610 cm<sup>−1</sup> shows no chemical changes in the material. The energy gap of this material can reach 3.85 eV, and its optical characteristics are better. Heat adaption allows the system to adjust to thermal imaging temperature variations. Higher thermal imaging temperatures reduce thermal stress and polymer expansion, indicating stability. Resistance to stretching and strain integrity indicate mechanical and thermal stability. Controlling thermal expansion in prosthetics prevents material deformation and ensures structural reliability. Tin dioxide (SnO<sub>2</sub>) was tested on <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, <i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, and <i>Candida albicans</i> active site residues using molecular docking. <i>C. albicans</i> had the lowest binding affinity (−6.1464 kcal/mol) and <i>P. aeruginosa</i> the highest. Due to hydrogen-ion interactions, the bond was maintained. Medical and thermal applications like biothermal imaging and prostheses could benefit from SnO<sub>2</sub>-PMMA. This work fills a literature gap, proving its originality. Heat and mechanical stability without chemical reaction from celery extract with thermography for green PMMA polymer nanocomposites. Additionally, integrating in vitro testing and molecular docking to understand the microbial mechanism at the molecular level boosts the potential of these materials for medical applications, notably prostheses, which have not been extensively explored.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 4","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03107-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The use of green synthesis allowed for the creation of nanocomposite samples utilizing celery extract. PMMA was dissolved in acetone and then added to the synthesized SnO2 at concentrations of 25%, 50%, 75%, and 100% µl. This was done after the SnO2 was the result of the synthesis process. The names S1, S2, S3, and S4 have been assigned to these concentrations. Bio nanoparticles/polymer nanocomposite measurements employing X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), and the Fourier transform infrared (FTIR) showed that the fourth concentration (S4) had the highest antibacterial activity, making it the most effective formulation. XRD reveals the tetragonal rutile phase structure in SnO2 nanoparticles prepared by green synthesis method. The agglomeration effect and particle sizes cause this. TEM showed nanoparticles dispersed throughout the polymer with occasional agglomerations. Nanoscale dispersion was evident in the average particle size of 16.89 nm. FTIR study showed no chemical interaction because no new peaks formed and both SnO2 and PMMA’s distinctive peaks remained constant. This implies that the compounds did not collide. The fact that the polymer was not dissolved in the SnO2 is demonstrated by this fact, indicating that the mixing was entirely physical, as the SnO2 peak at 610 cm−1 shows no chemical changes in the material. The energy gap of this material can reach 3.85 eV, and its optical characteristics are better. Heat adaption allows the system to adjust to thermal imaging temperature variations. Higher thermal imaging temperatures reduce thermal stress and polymer expansion, indicating stability. Resistance to stretching and strain integrity indicate mechanical and thermal stability. Controlling thermal expansion in prosthetics prevents material deformation and ensures structural reliability. Tin dioxide (SnO2) was tested on Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans active site residues using molecular docking. C. albicans had the lowest binding affinity (−6.1464 kcal/mol) and P. aeruginosa the highest. Due to hydrogen-ion interactions, the bond was maintained. Medical and thermal applications like biothermal imaging and prostheses could benefit from SnO2-PMMA. This work fills a literature gap, proving its originality. Heat and mechanical stability without chemical reaction from celery extract with thermography for green PMMA polymer nanocomposites. Additionally, integrating in vitro testing and molecular docking to understand the microbial mechanism at the molecular level boosts the potential of these materials for medical applications, notably prostheses, which have not been extensively explored.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.