The impact of 1D seismostratigraphical amplification effects on probabilistic seismic hazard maps at regional scale: the case of Tuscany (Central Italy)
{"title":"The impact of 1D seismostratigraphical amplification effects on probabilistic seismic hazard maps at regional scale: the case of Tuscany (Central Italy)","authors":"D. Albarello, N. Carfagna, P.L. Fantozzi","doi":"10.1007/s10518-025-02167-0","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic risk assessment at regional scale requires hazard estimates accounting for seismostratigraphical amplification effects. When detailed data related to the local subsoil configuration are lacking, these effects can be inferred from numerical simulations fed with information available on at regional scale. A key aspect concerns the implementation of these outcomes including relevant uncertainty into probabilistic seismic hazard estimates relative to standard subsoil conditions. A coherent approach is here proposed, which coherently accounts for the inherent probabilistic character of reference hazard estimates and of uncertain 1D seismostratographical amplification effects inferred from geological maps. The proposed approach has been applied in Central Italy relative PGA values corresponding to an exceedance probability of 10% in 50y. It is shown that accounting for uncertainty affecting amplification estimates is of main importance for correct implementation into PSHA. The outcome of this analysis is not expected to be considered for anti-seismic design of single structures, which requires detailed, and sound estimates of site effects at the proper scale. Anyway, these estimates may play a role for the preliminary identification of most critical situations along lifelines or outside inhabited areas where seismic microzonation studies are not available.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 8","pages":"3043 - 3055"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-025-02167-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02167-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic risk assessment at regional scale requires hazard estimates accounting for seismostratigraphical amplification effects. When detailed data related to the local subsoil configuration are lacking, these effects can be inferred from numerical simulations fed with information available on at regional scale. A key aspect concerns the implementation of these outcomes including relevant uncertainty into probabilistic seismic hazard estimates relative to standard subsoil conditions. A coherent approach is here proposed, which coherently accounts for the inherent probabilistic character of reference hazard estimates and of uncertain 1D seismostratographical amplification effects inferred from geological maps. The proposed approach has been applied in Central Italy relative PGA values corresponding to an exceedance probability of 10% in 50y. It is shown that accounting for uncertainty affecting amplification estimates is of main importance for correct implementation into PSHA. The outcome of this analysis is not expected to be considered for anti-seismic design of single structures, which requires detailed, and sound estimates of site effects at the proper scale. Anyway, these estimates may play a role for the preliminary identification of most critical situations along lifelines or outside inhabited areas where seismic microzonation studies are not available.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.