{"title":"Influence of pulsed waveform parameters on the microstructure and electrochemical corrosion resistance of electrodeposited Ni–Sn alloy coatings","authors":"Atefeh Heidarian, Seyed Mohammad Mousavi Khoei","doi":"10.1007/s40243-025-00317-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study systematically compares the microstructural characteristics, surface morphology, and corrosion resistance of Ni-Sn alloy coatings electrodeposited using direct current (DC) and pulse current (PC) methods. The influence of waveform geometry – including triangular, rectangular, sinusoidal, and ramp configurations – on coating properties was comprehensively characterized through microhardness testing, X-ray diffraction (XRD), scanning electron microscopy (SEM), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) analyses. These techniques respectively evaluated the mechanical properties, phase composition, morphological features, and electrochemical corrosion behavior of the deposited coatings. X-ray diffraction (XRD) analysis revealed that the coatings consisted predominantly of the Ni₃Sn₂ intermetallic phase. Scanning electron microscopy (SEM) examination demonstrated that the Ni-Sn coating deposited using PC current exhibited superior surface uniformity but lower density compared to the direct current (DC) deposited coating. Microhardness measurements showed an increase from 238 HV (DC) to 297 HV for the ramp-wave PC coating. Electrochemical impedance spectroscopy revealed substantial improvements in charge transfer resistance (Rct), with PC-deposited coatings showing increases of 1570% (ramp), 554% (sinusoidal), 324% (triangular), and 83% (rectangular) relative to DC coatings. Correspondingly, potentiodynamic polarization measurements demonstrated that the corrosion current density (icorr) was reduced by factors of 14.5 (ramp), 3.2 (sinusoidal), and 2.9 (triangular) compared to the DC-deposited coating. Ultimately, PC plating yielded Ni-Sn alloys with improved corrosion resistance across all waveforms (ramp, sinusoidal, triangular, DC). This suggests promise for these advanced coatings in microelectronics and energy storage.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00317-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00317-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study systematically compares the microstructural characteristics, surface morphology, and corrosion resistance of Ni-Sn alloy coatings electrodeposited using direct current (DC) and pulse current (PC) methods. The influence of waveform geometry – including triangular, rectangular, sinusoidal, and ramp configurations – on coating properties was comprehensively characterized through microhardness testing, X-ray diffraction (XRD), scanning electron microscopy (SEM), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) analyses. These techniques respectively evaluated the mechanical properties, phase composition, morphological features, and electrochemical corrosion behavior of the deposited coatings. X-ray diffraction (XRD) analysis revealed that the coatings consisted predominantly of the Ni₃Sn₂ intermetallic phase. Scanning electron microscopy (SEM) examination demonstrated that the Ni-Sn coating deposited using PC current exhibited superior surface uniformity but lower density compared to the direct current (DC) deposited coating. Microhardness measurements showed an increase from 238 HV (DC) to 297 HV for the ramp-wave PC coating. Electrochemical impedance spectroscopy revealed substantial improvements in charge transfer resistance (Rct), with PC-deposited coatings showing increases of 1570% (ramp), 554% (sinusoidal), 324% (triangular), and 83% (rectangular) relative to DC coatings. Correspondingly, potentiodynamic polarization measurements demonstrated that the corrosion current density (icorr) was reduced by factors of 14.5 (ramp), 3.2 (sinusoidal), and 2.9 (triangular) compared to the DC-deposited coating. Ultimately, PC plating yielded Ni-Sn alloys with improved corrosion resistance across all waveforms (ramp, sinusoidal, triangular, DC). This suggests promise for these advanced coatings in microelectronics and energy storage.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies