Bounds on \(T_c\) in the Eliashberg Theory of Superconductivity. II: Dispersive Phonons

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
M. K.-H. Kiessling, B. L. Altshuler, E. A. Yuzbashyan
{"title":"Bounds on \\(T_c\\) in the Eliashberg Theory of Superconductivity. II: Dispersive Phonons","authors":"M. K.-H. Kiessling,&nbsp;B. L. Altshuler,&nbsp;E. A. Yuzbashyan","doi":"10.1007/s10955-025-03468-z","DOIUrl":null,"url":null,"abstract":"<div><p>The standard Eliashberg theory of superconductivity is studied, in which the effective electron-electron interactions are modelled as mediated by generally dispersive phonons, with Eliashberg spectral function <span>\\(\\alpha ^2\\!F(\\omega )\\ge 0\\)</span> that is <span>\\(\\propto \\omega ^2\\)</span> for small <span>\\(\\omega &gt;0\\)</span> and vanishes for large <span>\\(\\omega \\)</span>. The Eliashberg function also defines the electron-phonon coupling strength <span>\\(\\lambda := 2 \\displaystyle \\int _{\\mathbb {R}_+}\\!\\! \\frac{\\alpha ^2\\!F(\\omega )}{\\omega }d\\omega \\)</span>. Setting <span>\\({ \\displaystyle \\frac{2\\alpha ^2\\!F(\\omega )}{\\omega }}d\\omega =: \\lambda P(d\\omega )\\)</span>, formally defining a probability measure <span>\\(P(d\\omega )\\)</span> with compact support, and assuming as usual that the phase transition between normal and superconductivity coincides with the linear stability boundary <span>\\(\\mathscr {S}_{\\!c}\\)</span> of the normal region in the <span>\\((\\lambda ,P,T)\\)</span> parameter space against perturbations toward the superconducting region, it is shown that this <i>critical hypersurface</i> <span>\\(\\mathscr {S}_{\\!c}\\)</span> is a graph of a function <span>\\(\\Lambda (P,T)\\)</span>. This proves that the normal and the superconducting regions are simply connected. Moreover, it is shown that <span>\\(\\mathscr {S}_{\\!c}\\)</span> is determined by a variational principle: if <span>\\((\\lambda ,P,T)\\in \\mathscr {S}_{\\!c}\\)</span>, then <span>\\(\\lambda = 1/\\mathfrak {k}(P,T)\\)</span>, where <span>\\(\\mathfrak {k}(P,T)&gt;0\\)</span> is the largest eigenvalue of a compact self-adjoint operator <span>\\(\\mathfrak {K}(P,T)\\)</span> on <span>\\(\\ell ^2\\)</span> sequences that is constructed explicitly in the paper, for all admissible <i>P</i>. Furthermore, given any such <i>P</i>, sufficient conditions on <i>T</i> are stated under which the map <span>\\(T\\mapsto \\lambda = \\Lambda (P,T)\\)</span> is invertible. For sufficiently large <span>\\(\\lambda \\)</span> this yields the following: (i) the existence of a critical temperature <span>\\(T_c\\)</span> as function of <span>\\(\\lambda \\)</span> and <i>P</i>; (ii) an ordered sequence of lower bounds on <span>\\(T_c(\\lambda ,P)\\)</span> that converges to <span>\\(T_c(\\lambda ,P)\\)</span>. Also obtained is an upper bound on <span>\\(T_c(\\lambda ,P)\\)</span>. Although not optimal, it agrees with the asymptotic form <span>\\(T_c(\\lambda ,P) \\sim C \\sqrt{\\langle \\omega ^2\\rangle } \\sqrt{\\lambda }\\)</span> valid for <span>\\(\\lambda \\sim \\infty \\)</span>, given <i>P</i>, though with a constant <i>C</i> that is a factor <span>\\(\\approx 2.034\\)</span> larger than the sharp constant; here, <span>\\(\\langle \\omega ^2\\rangle := \\int _{\\mathbb {R}_+} \\omega ^2 P(d\\omega )\\)</span>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 7","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03468-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03468-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The standard Eliashberg theory of superconductivity is studied, in which the effective electron-electron interactions are modelled as mediated by generally dispersive phonons, with Eliashberg spectral function \(\alpha ^2\!F(\omega )\ge 0\) that is \(\propto \omega ^2\) for small \(\omega >0\) and vanishes for large \(\omega \). The Eliashberg function also defines the electron-phonon coupling strength \(\lambda := 2 \displaystyle \int _{\mathbb {R}_+}\!\! \frac{\alpha ^2\!F(\omega )}{\omega }d\omega \). Setting \({ \displaystyle \frac{2\alpha ^2\!F(\omega )}{\omega }}d\omega =: \lambda P(d\omega )\), formally defining a probability measure \(P(d\omega )\) with compact support, and assuming as usual that the phase transition between normal and superconductivity coincides with the linear stability boundary \(\mathscr {S}_{\!c}\) of the normal region in the \((\lambda ,P,T)\) parameter space against perturbations toward the superconducting region, it is shown that this critical hypersurface \(\mathscr {S}_{\!c}\) is a graph of a function \(\Lambda (P,T)\). This proves that the normal and the superconducting regions are simply connected. Moreover, it is shown that \(\mathscr {S}_{\!c}\) is determined by a variational principle: if \((\lambda ,P,T)\in \mathscr {S}_{\!c}\), then \(\lambda = 1/\mathfrak {k}(P,T)\), where \(\mathfrak {k}(P,T)>0\) is the largest eigenvalue of a compact self-adjoint operator \(\mathfrak {K}(P,T)\) on \(\ell ^2\) sequences that is constructed explicitly in the paper, for all admissible P. Furthermore, given any such P, sufficient conditions on T are stated under which the map \(T\mapsto \lambda = \Lambda (P,T)\) is invertible. For sufficiently large \(\lambda \) this yields the following: (i) the existence of a critical temperature \(T_c\) as function of \(\lambda \) and P; (ii) an ordered sequence of lower bounds on \(T_c(\lambda ,P)\) that converges to \(T_c(\lambda ,P)\). Also obtained is an upper bound on \(T_c(\lambda ,P)\). Although not optimal, it agrees with the asymptotic form \(T_c(\lambda ,P) \sim C \sqrt{\langle \omega ^2\rangle } \sqrt{\lambda }\) valid for \(\lambda \sim \infty \), given P, though with a constant C that is a factor \(\approx 2.034\) larger than the sharp constant; here, \(\langle \omega ^2\rangle := \int _{\mathbb {R}_+} \omega ^2 P(d\omega )\).

Eliashberg超导理论中\(T_c\)的边界。II:色散声子
研究了标准的Eliashberg超导理论,其中有效的电子-电子相互作用被建模为由一般色散声子介导,Eliashberg谱函数\(\alpha ^2\!F(\omega )\ge 0\)对于小的\(\omega >0\)为\(\propto \omega ^2\),对于大的\(\omega \)为消失。Eliashberg函数还定义了电子-声子耦合强度\(\lambda := 2 \displaystyle \int _{\mathbb {R}_+}\!\! \frac{\alpha ^2\!F(\omega )}{\omega }d\omega \)。设置\({ \displaystyle \frac{2\alpha ^2\!F(\omega )}{\omega }}d\omega =: \lambda P(d\omega )\),正式定义一个具有紧支撑的概率测度\(P(d\omega )\),并像往常一样假设正常和超导之间的相变与正常区域在\((\lambda ,P,T)\)参数空间中对超导区域的扰动的线性稳定边界\(\mathscr {S}_{\!c}\)重合,表明该临界超曲面\(\mathscr {S}_{\!c}\)是一个函数\(\Lambda (P,T)\)的图。这证明了法向区和超导区是单连通的。并且证明了\(\mathscr {S}_{\!c}\)是由变分原理决定的:如果\((\lambda ,P,T)\in \mathscr {S}_{\!c}\),那么\(\lambda = 1/\mathfrak {k}(P,T)\),其中\(\mathfrak {k}(P,T)>0\)是在本文明确构造的\(\ell ^2\)序列上的紧自伴随算子\(\mathfrak {K}(P,T)\)的最大特征值,对于所有可容许P,并且给定任意这样的P,给出了映射\(T\mapsto \lambda = \Lambda (P,T)\)可逆的充分条件。对于足够大的\(\lambda \),可以得到以下结果:(i)存在一个临界温度\(T_c\),它是\(\lambda \)和P的函数;(ii)收敛于\(T_c(\lambda ,P)\)的\(T_c(\lambda ,P)\)下界的有序序列。还得到了\(T_c(\lambda ,P)\)的上界。虽然不是最优的,但它符合对\(\lambda \sim \infty \)有效的渐近形式\(T_c(\lambda ,P) \sim C \sqrt{\langle \omega ^2\rangle } \sqrt{\lambda }\),给定P,尽管常数C是一个比尖锐常数\(\approx 2.034\)大的因子;这里,\(\langle \omega ^2\rangle := \int _{\mathbb {R}_+} \omega ^2 P(d\omega )\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信