Convenient synthesis of metal organic framework nanocomposites MOF:Fe(II)-CMC for effective adsorption to treat water samples from cationic pollutants dyes

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Heba E. Saad, Yusif S. El-Sayed, Mohamed A. Hashem, Gaber M. Abu El-Reash, Mohamed Gaber
{"title":"Convenient synthesis of metal organic framework nanocomposites MOF:Fe(II)-CMC for effective adsorption to treat water samples from cationic pollutants dyes","authors":"Heba E. Saad,&nbsp;Yusif S. El-Sayed,&nbsp;Mohamed A. Hashem,&nbsp;Gaber M. Abu El-Reash,&nbsp;Mohamed Gaber","doi":"10.1007/s13201-025-02544-9","DOIUrl":null,"url":null,"abstract":"<div><p>The simple synthesis of an iron-based metal–organic framework nanocomposites (MOF:Fe(II)-CMC) has been successfully performed. The distinctive characteristics of the MOF nanocomposites were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) for morphology visualization, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area analysis, and zeta potential measurements. The adsorptive potential was established utilizing the cationic dyes (methylene blue, MB), crystal violet (CV), and malachite green (MG) water pollutants. The synthesized MOF:Fe(II)-CMC nanocomposites owned a crystalline microporous–mesoporous structure with a large surface area. The equilibrium data best conformed to the Langmuir isotherm model with correlation coefficient (<i>R</i><sup>2</sup> &gt; 0.994) and pseudo-second-order kinetic model, with the maximum adsorption capacity for MB, CV, and MG being 166.66 mg/g at pH 5, 188.67 mg/g at pH 7, and 175.43 mg/g at pH 4, correspondingly at room temperature with an equilibrium concentration of 0.1 mg/ml. Thermodynamic analysis displayed the good energetics (∆<i>G</i> and ∆<i>S</i> &lt; 0) and exothermic nature (∆<i>H</i> &lt; 0) of the adsorption process. Negligible degradation of the adsorptive performance was noted under high ionic strength solutions and simulated water samples. MOF:Fe(II)-CMC exhibited great regenerative potential by ethanol stripping for at least 5 regeneration cycles with an adsorption capacity not less than 90%. The current findings give significant insights into the eco-friendly synthesis process of MOF:Fe(II)-CMC, with great upscaling prospects for the successful treatment of water pollutants, especially in high-strength water samples with complex water matrices.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 8","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02544-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02544-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

The simple synthesis of an iron-based metal–organic framework nanocomposites (MOF:Fe(II)-CMC) has been successfully performed. The distinctive characteristics of the MOF nanocomposites were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) for morphology visualization, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area analysis, and zeta potential measurements. The adsorptive potential was established utilizing the cationic dyes (methylene blue, MB), crystal violet (CV), and malachite green (MG) water pollutants. The synthesized MOF:Fe(II)-CMC nanocomposites owned a crystalline microporous–mesoporous structure with a large surface area. The equilibrium data best conformed to the Langmuir isotherm model with correlation coefficient (R2 > 0.994) and pseudo-second-order kinetic model, with the maximum adsorption capacity for MB, CV, and MG being 166.66 mg/g at pH 5, 188.67 mg/g at pH 7, and 175.43 mg/g at pH 4, correspondingly at room temperature with an equilibrium concentration of 0.1 mg/ml. Thermodynamic analysis displayed the good energetics (∆G and ∆S < 0) and exothermic nature (∆H < 0) of the adsorption process. Negligible degradation of the adsorptive performance was noted under high ionic strength solutions and simulated water samples. MOF:Fe(II)-CMC exhibited great regenerative potential by ethanol stripping for at least 5 regeneration cycles with an adsorption capacity not less than 90%. The current findings give significant insights into the eco-friendly synthesis process of MOF:Fe(II)-CMC, with great upscaling prospects for the successful treatment of water pollutants, especially in high-strength water samples with complex water matrices.

方便合成金属有机骨架纳米复合材料MOF:Fe(II)-CMC,有效吸附处理水样中阳离子污染物染料
成功地合成了铁基金属-有机骨架纳米复合材料(MOF:Fe(II)-CMC)。采用x射线衍射(XRD)、场发射扫描电镜(FESEM)、傅里叶变换红外光谱(FTIR)、热重分析(TGA)、能量色散x射线光谱(EDX)、brunauer - emmet - teller (BET)表面积分析和zeta电位测量分析了MOF纳米复合材料的独特特征。利用阳离子染料(亚甲基蓝,MB)、结晶紫(CV)和孔雀石绿(MG)对水污染物进行了吸附。合成的MOF:Fe(II)-CMC纳米复合材料具有大表面积的结晶微孔-介孔结构。平衡数据最符合Langmuir等温线模型,相关系数(R2 > 0.994)和拟二级动力学模型,在室温下,平衡浓度为0.1 MG /ml时,对MB、CV和MG的最大吸附量分别为:pH 5时166.66 MG /g, pH 7时188.67 MG /g, pH 4时175.43 MG /g。热力学分析表明,吸附过程具有良好的热力学(∆G和∆S <; 0)和放热性质(∆H < 0)。在高离子强度溶液和模拟水样下,吸附性能的退化可以忽略不计。MOF:Fe(II)-CMC经乙醇溶出再生至少5次,吸附量不低于90%,表现出良好的再生潜力。目前的研究结果为MOF:Fe(II)-CMC的生态合成过程提供了重要的见解,具有成功处理水污染物的巨大前景,特别是在具有复杂水基质的高强度水样中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信