{"title":"Organosilicon compound reactivity with biologically and chemically degraded Scots pine as determined by 1H–13C HSQC NMR","authors":"Daniel J. Yelle, Magdalena Broda","doi":"10.1007/s00226-025-01673-3","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ancient archeological wooden artifacts hold important stories from our history that can only be retold through wood conservation. Understanding the detailed mechanisms of how to stabilize these fragile artifacts dimensionally is necessary to effectively preserve them for the next generations. In this study, highly effective organosilicons are used to treat and infiltrate model degraded wood. We used wood dissolution techniques, in conjunction with two-dimensional nuclear magnetic resonance spectroscopy, to characterize the changes occurring to native wood cell wall polymers before and after organosilicon treatments. Methyltrimethoxysilane was shown to be the mildest organosilicon towards wood polymer depolymerization in the model woods, while the alkoxysilane with a mercaptopropyl group resulted in more dramatic cell wall depolymerization, removing lignin linkages and polysaccharides. The siloxane treatment did depolymerize the model woods as well, giving more intermediate cell wall depolymerization and leading to reduction of the <i>α</i>-carbonyl in G-2ʹ guaiacyl units in lignin. We hypothesize that the organosilicon treatments can effectively infiltrate cell wall matrices, partially depolymerize wood cell wall polymers, and meld the truncated wood polymers together to stabilize cell wall dimensions.</p>\n </div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-025-01673-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Ancient archeological wooden artifacts hold important stories from our history that can only be retold through wood conservation. Understanding the detailed mechanisms of how to stabilize these fragile artifacts dimensionally is necessary to effectively preserve them for the next generations. In this study, highly effective organosilicons are used to treat and infiltrate model degraded wood. We used wood dissolution techniques, in conjunction with two-dimensional nuclear magnetic resonance spectroscopy, to characterize the changes occurring to native wood cell wall polymers before and after organosilicon treatments. Methyltrimethoxysilane was shown to be the mildest organosilicon towards wood polymer depolymerization in the model woods, while the alkoxysilane with a mercaptopropyl group resulted in more dramatic cell wall depolymerization, removing lignin linkages and polysaccharides. The siloxane treatment did depolymerize the model woods as well, giving more intermediate cell wall depolymerization and leading to reduction of the α-carbonyl in G-2ʹ guaiacyl units in lignin. We hypothesize that the organosilicon treatments can effectively infiltrate cell wall matrices, partially depolymerize wood cell wall polymers, and meld the truncated wood polymers together to stabilize cell wall dimensions.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.