Symplectic Mixed Spectral Element Time-Domain Method for 3-D Schrödinger–Maxwell Equations With Generalized Coulomb Gauge

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chengzhuo Zhao;Wenjie Tang;Kangshuai Du;Na Liu;Ruili Zhang;Qing Huo Liu
{"title":"Symplectic Mixed Spectral Element Time-Domain Method for 3-D Schrödinger–Maxwell Equations With Generalized Coulomb Gauge","authors":"Chengzhuo Zhao;Wenjie Tang;Kangshuai Du;Na Liu;Ruili Zhang;Qing Huo Liu","doi":"10.1109/TMAG.2025.3597135","DOIUrl":null,"url":null,"abstract":"In this work, the variational principle of Hamilton is applied to construct constrained Hamiltonian systems for Schrödinger–Maxwell (SM) equations with generalized Coulomb gauge. Then, on the foundation of constrained Hamiltonian systems, symplectic mixed spectral element time-domain (S-MSETD) method for 3-D SM equations is proposed to guarantee the zero divergence of the magnetic vector potential (A) in edge spectral element method (SEM) and control both the probability and energy error for all time steps. In S-MSETD of SM equations, mixed SEM (MSEM) is employed for the spatial discretization of the wave function (<inline-formula> <tex-math>$\\Psi $ </tex-math></inline-formula>) and A under generalized Coulomb gauge, and the time-stepping scheme is the symplectic implicit midpoint (IM) method. Several numerical examples are given to verify that S-MSETD maintains high accuracy after the long-term simulation.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 10","pages":"1-11"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11121371/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the variational principle of Hamilton is applied to construct constrained Hamiltonian systems for Schrödinger–Maxwell (SM) equations with generalized Coulomb gauge. Then, on the foundation of constrained Hamiltonian systems, symplectic mixed spectral element time-domain (S-MSETD) method for 3-D SM equations is proposed to guarantee the zero divergence of the magnetic vector potential (A) in edge spectral element method (SEM) and control both the probability and energy error for all time steps. In S-MSETD of SM equations, mixed SEM (MSEM) is employed for the spatial discretization of the wave function ( $\Psi $ ) and A under generalized Coulomb gauge, and the time-stepping scheme is the symplectic implicit midpoint (IM) method. Several numerical examples are given to verify that S-MSETD maintains high accuracy after the long-term simulation.
广义库仑规三维Schrödinger-Maxwell方程的辛混合谱元时域解法
本文应用Hamilton变分原理构造了具有广义库仑规的Schrödinger-Maxwell (SM)方程的约束Hamilton系统。然后,在约束哈密顿系统的基础上,提出了三维SM方程的辛混合谱元时域(S-MSETD)方法,保证了边缘谱元法(SEM)中磁矢量势(A)的零散度,同时控制了各时间步的概率和能量误差。在SM方程的S-MSETD中,采用混合扫描电镜(MSEM)对广义库仑规下的波函数($\Psi $)和A进行空间离散化,时间步进格式为辛隐中点法(IM)。通过数值算例验证了S-MSETD在长期模拟后仍能保持较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信