An-Toan Nguyen;Binh-Minh Nguyen;João Pedro F. Trovão;Minh C. Ta
{"title":"An Integrated Modeling Framework for Motion Control and Energy Management in Multi-Motor Electric Vehicles","authors":"An-Toan Nguyen;Binh-Minh Nguyen;João Pedro F. Trovão;Minh C. Ta","doi":"10.1109/OJVT.2025.3603417","DOIUrl":null,"url":null,"abstract":"Multi-motor electric vehicles (MMEVs) present complex challenges for control and optimization due to the distribution of control actions and state variables across multiple subsystems and hierarchical levels. Although electric vehicle (EV) modeling has been widely studied, accurately capturing and optimizing the longitudinal energy efficiency and dynamic performance of MMEVs remains a significant challenge. This complexity is further increased by the presence of different motor types, such as induction motors (IMs) and permanent magnet synchronous motors (PMSMs), and various mechanical configurations in all-wheel drive systems. To address these issues, this paper proposes a global-local modeling framework that extends the Energetic Macroscopic Representation (EMR) methodology. The framework integrates detailed models of the electrical drive system with comprehensive mechanical subsystem modeling, including gearbox, differential, half-shafts, wheels, and tires. A global input power model links local control actions and state variables to overall energy flow, supporting a unified approach to longitudinal motion control and energy optimization. In contrast to conventional EMR-based models, the proposed framework explicitly incorporates driveline and tire dynamics, which significantly affect energy consumption due to drivetrain losses and tire slip. The model is evaluated through two scenarios that assess the effects of drivetrain modeling and force distribution strategies. The results show improved control system performance and enhanced energy efficiency, supporting future advancements in longitudinal dynamics modeling for MMEV.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2479-2493"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11142713","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11142713/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-motor electric vehicles (MMEVs) present complex challenges for control and optimization due to the distribution of control actions and state variables across multiple subsystems and hierarchical levels. Although electric vehicle (EV) modeling has been widely studied, accurately capturing and optimizing the longitudinal energy efficiency and dynamic performance of MMEVs remains a significant challenge. This complexity is further increased by the presence of different motor types, such as induction motors (IMs) and permanent magnet synchronous motors (PMSMs), and various mechanical configurations in all-wheel drive systems. To address these issues, this paper proposes a global-local modeling framework that extends the Energetic Macroscopic Representation (EMR) methodology. The framework integrates detailed models of the electrical drive system with comprehensive mechanical subsystem modeling, including gearbox, differential, half-shafts, wheels, and tires. A global input power model links local control actions and state variables to overall energy flow, supporting a unified approach to longitudinal motion control and energy optimization. In contrast to conventional EMR-based models, the proposed framework explicitly incorporates driveline and tire dynamics, which significantly affect energy consumption due to drivetrain losses and tire slip. The model is evaluated through two scenarios that assess the effects of drivetrain modeling and force distribution strategies. The results show improved control system performance and enhanced energy efficiency, supporting future advancements in longitudinal dynamics modeling for MMEV.