Deep Learning-Based Secure Tag Selection in BackCom Network With RIS-Induced Interference

IF 3.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yasin Khan;Shalini Tripathi;Ankit Dubey;Sudhir Kumar;Sunish Kumar Orappanpara Soman
{"title":"Deep Learning-Based Secure Tag Selection in BackCom Network With RIS-Induced Interference","authors":"Yasin Khan;Shalini Tripathi;Ankit Dubey;Sudhir Kumar;Sunish Kumar Orappanpara Soman","doi":"10.1109/JRFID.2025.3611299","DOIUrl":null,"url":null,"abstract":"This article investigates the secrecy performance of a non-linear energy-harvesting backscatter communication (BackCom) network in the presence of direct link and reconfigurable intelligent surface (RIS) interference. The network comprises a source, multiple passive tags, an RIS, and a legitimate reader, with an eavesdropper attempting to intercept the communication. We analyze a tag selection scheme based on long-short-term memory (LSTM) to address the challenge of selecting tags under the influence of direct link and the RIS interference. The nonideal behavior of the RIS is exploited to enhance secrecy performance by modeling RIS phase errors using Von Mises and uniform distributions. Because of interference from the direct link and the RIS being common to all tags, the secrecy rates of different tags are correlated. The LSTM-based scheme effectively captures this correlation and perfectly matches the conventional selection scheme on low and high tag counts. The secrecy outage probability (SOP) achieved using the LSTM outperforms other machine learning techniques, such as <inline-formula> <tex-math>$k$ </tex-math></inline-formula>-nearest neighbors (<inline-formula> <tex-math>$k$ </tex-math></inline-formula>-NN), decision trees (DT), and support vector machines (SVM). We also demonstrate the impact of RIS elements, phase error parameters, and the number of tags on the SOP in the considered RIS-aided BackCom network.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"797-806"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11168866/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the secrecy performance of a non-linear energy-harvesting backscatter communication (BackCom) network in the presence of direct link and reconfigurable intelligent surface (RIS) interference. The network comprises a source, multiple passive tags, an RIS, and a legitimate reader, with an eavesdropper attempting to intercept the communication. We analyze a tag selection scheme based on long-short-term memory (LSTM) to address the challenge of selecting tags under the influence of direct link and the RIS interference. The nonideal behavior of the RIS is exploited to enhance secrecy performance by modeling RIS phase errors using Von Mises and uniform distributions. Because of interference from the direct link and the RIS being common to all tags, the secrecy rates of different tags are correlated. The LSTM-based scheme effectively captures this correlation and perfectly matches the conventional selection scheme on low and high tag counts. The secrecy outage probability (SOP) achieved using the LSTM outperforms other machine learning techniques, such as $k$ -nearest neighbors ( $k$ -NN), decision trees (DT), and support vector machines (SVM). We also demonstrate the impact of RIS elements, phase error parameters, and the number of tags on the SOP in the considered RIS-aided BackCom network.
ris干扰下基于深度学习的BackCom网络安全标签选择
本文研究了直接链路和可重构智能面(RIS)干扰下非线性能量收集反向散射通信(BackCom)网络的保密性能。该网络包括源、多个无源标签、RIS和合法读取器,并具有试图拦截通信的窃听器。针对直接链路和RIS干扰下的标签选择问题,提出了一种基于长短期记忆(LSTM)的标签选择方案。通过使用Von Mises和均匀分布建模RIS相位误差,利用RIS的非理想行为来提高保密性能。由于直接链路的干扰和RIS对所有标签都是通用的,所以不同标签的保密率是相关的。基于lstm的方案有效地捕获了这种相关性,并在低标签数和高标签数上完美匹配传统的选择方案。使用LSTM实现的保密中断概率(SOP)优于其他机器学习技术,例如$k$ -最近邻($k$ -NN),决策树(DT)和支持向量机(SVM)。我们还演示了RIS元素、相位误差参数和标签数量对所考虑的RIS辅助BackCom网络中SOP的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信