Tom van Schaik, Mikhail Magnitov, Marcel de Haas, Jeremie Breda, Elzo de Wit, Anna G Manjon, René H Medema, Henrike Johanna Gothe, Vassilis Roukos, Adam J Buckle, Catherine Naughton, Nick Gilbert, Bas van Steensel, Stefano G Manzo
{"title":"Coordinated control of genome–nuclear lamina interactions by topoisomerase 2B and lamin B receptor","authors":"Tom van Schaik, Mikhail Magnitov, Marcel de Haas, Jeremie Breda, Elzo de Wit, Anna G Manjon, René H Medema, Henrike Johanna Gothe, Vassilis Roukos, Adam J Buckle, Catherine Naughton, Nick Gilbert, Bas van Steensel, Stefano G Manzo","doi":"10.1093/nar/gkaf964","DOIUrl":null,"url":null,"abstract":"Lamina-associated domains (LADs) are megabase-sized genomic regions anchored to the nuclear lamina (NL). Factors controlling the interactions of the genome with the NL have largely remained elusive. Here, we identified DNA topoisomerase 2 beta (TOP2B) as a regulator of these interactions. TOP2B binds predominantly to inter-LAD (iLAD) chromatin and its depletion results in a partial loss of genomic partitioning between LADs and iLADs, suggesting that this enzyme might protect specific iLADs from interacting with the NL. TOP2B depletion affects LAD interactions with lamin B receptor (LBR) more than with lamins. LBR depletion phenocopies the effects of TOP2B depletion, despite the different positioning of the two proteins in the genome. This suggests a complementary mechanism for organizing the genome at the NL. Indeed, co-depletion of TOP2B and LBR causes partial LAD/iLAD inversion, reflecting changes typical of oncogene-induced senescence. We propose that a coordinated axis controlled by TOP2B in iLADs and LBR in LADs maintains the partitioning of the genome between the NL and the nuclear interior.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"94 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf964","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lamina-associated domains (LADs) are megabase-sized genomic regions anchored to the nuclear lamina (NL). Factors controlling the interactions of the genome with the NL have largely remained elusive. Here, we identified DNA topoisomerase 2 beta (TOP2B) as a regulator of these interactions. TOP2B binds predominantly to inter-LAD (iLAD) chromatin and its depletion results in a partial loss of genomic partitioning between LADs and iLADs, suggesting that this enzyme might protect specific iLADs from interacting with the NL. TOP2B depletion affects LAD interactions with lamin B receptor (LBR) more than with lamins. LBR depletion phenocopies the effects of TOP2B depletion, despite the different positioning of the two proteins in the genome. This suggests a complementary mechanism for organizing the genome at the NL. Indeed, co-depletion of TOP2B and LBR causes partial LAD/iLAD inversion, reflecting changes typical of oncogene-induced senescence. We propose that a coordinated axis controlled by TOP2B in iLADs and LBR in LADs maintains the partitioning of the genome between the NL and the nuclear interior.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.