Monolithic multimodal neural probes for sustained stimulation and long-term neural recording

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Luxi Zhang, Shengming Wang, Jie Xia, Boyu Li, Shaomin Zhang, Jikui Luo, Fan Zhang, Tianyu Zheng, Gang Pan, Tawfique Hasan, Yanlan Yu, Guoqing Ding, Hao Jin, Zongyin Yang, Shurong Dong
{"title":"Monolithic multimodal neural probes for sustained stimulation and long-term neural recording","authors":"Luxi Zhang,&nbsp;Shengming Wang,&nbsp;Jie Xia,&nbsp;Boyu Li,&nbsp;Shaomin Zhang,&nbsp;Jikui Luo,&nbsp;Fan Zhang,&nbsp;Tianyu Zheng,&nbsp;Gang Pan,&nbsp;Tawfique Hasan,&nbsp;Yanlan Yu,&nbsp;Guoqing Ding,&nbsp;Hao Jin,&nbsp;Zongyin Yang,&nbsp;Shurong Dong","doi":"10.1126/sciadv.adu1753","DOIUrl":null,"url":null,"abstract":"<div >Long-term implantable neural probes with dual-mode optical stimulation and simultaneous electrical recording are crucial for modulating neural loop activity in vivo. Traditional probes using “add-on” strategies often suffer from mechanical rigidity, compromised electrical performance, and insufficient biocompatibility, limiting their clinical applicability. In this study, we present a method for the direct laser writing of electrode arrays onto the curved surface of optical fibers, integrating them within a biocompatible polymer coating to create monolithic neural probes. The monolithic probes demonstrate high mechanical bending endurance, stable impedance, and improved biocompatibility, resulting in a lower inflammatory response compared to conventional systems. Furthermore, our method facilitates the multilayer integration of multilayer electrodes onto optical fibers, enabling high-density electrical readout channels. This advancement represents substantial progress in neuroengineering, with promising implications for future neural monitoring and modulation applications.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 39","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu1753","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu1753","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term implantable neural probes with dual-mode optical stimulation and simultaneous electrical recording are crucial for modulating neural loop activity in vivo. Traditional probes using “add-on” strategies often suffer from mechanical rigidity, compromised electrical performance, and insufficient biocompatibility, limiting their clinical applicability. In this study, we present a method for the direct laser writing of electrode arrays onto the curved surface of optical fibers, integrating them within a biocompatible polymer coating to create monolithic neural probes. The monolithic probes demonstrate high mechanical bending endurance, stable impedance, and improved biocompatibility, resulting in a lower inflammatory response compared to conventional systems. Furthermore, our method facilitates the multilayer integration of multilayer electrodes onto optical fibers, enabling high-density electrical readout channels. This advancement represents substantial progress in neuroengineering, with promising implications for future neural monitoring and modulation applications.

Abstract Image

用于持续刺激和长期神经记录的单片多模态神经探针
具有双模光刺激和同步电记录的长期植入式神经探针是调节体内神经环活动的关键。使用“附加”策略的传统探针通常存在机械刚性、电性能受损和生物相容性不足的问题,限制了它们的临床适用性。在这项研究中,我们提出了一种将电极阵列直接激光写入光纤曲面的方法,将它们集成在生物相容性聚合物涂层中,以创建单片神经探针。这种单片探针具有较高的机械弯曲耐久性、稳定的阻抗和更好的生物相容性,与传统系统相比,炎症反应更低。此外,我们的方法促进了多层电极在光纤上的多层集成,实现了高密度的电读出通道。这一进展代表了神经工程的实质性进展,对未来的神经监测和调制应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信