Songbo Ye, Yuhang Wang, Heng Liu, Di Zhang, Xue Jia, Linda Zhang, Yizhou Zhang, Akichika Kumatani, Hitoshi Shiku, Hao Li
{"title":"Decoding pH-dependent electrocatalysis through electric field models and microkinetic volcanoes","authors":"Songbo Ye, Yuhang Wang, Heng Liu, Di Zhang, Xue Jia, Linda Zhang, Yizhou Zhang, Akichika Kumatani, Hitoshi Shiku, Hao Li","doi":"10.1039/d5ta06105a","DOIUrl":null,"url":null,"abstract":"The impact of electrolyte pH on electrocatalytic reactions has long been recognized, yet its underlying mechanisms remain a subject of active debate. This perspective explores how pH influences reaction activity and mechanisms at the computationally affordable atomic scale. Traditional interpretations attribute pH effects to changes described by the computational hydrogen electrode (CHE) model and the Nernst equation. However, recent advances have uncovered more complex interfacial interactions involving electric fields, including dipole moments (<em>μ</em>), polarizability (<em>α</em>), and the potential of zero charge (PZC). We summarize recent progress on how pH influences surface states and reaction mechanisms across various typical electrocatalytic processes, including the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO<small><sub>2</sub></small>RR), and nitrate reduction reaction (NO<small><sub>3</sub></small>RR). By integrating experimental observations with theoretical models and computational simulations, researchers are beginning to unravel the multifaceted role of pH in electrocatalysis. Furthermore, several key theoretical frameworks have been developed to date to predict reaction activity and elucidate underlying mechanisms, such as the reversible hydrogen electrode (RHE)-referenced Pourbaix diagram and the pH-dependent microkinetic volcano model. Understanding these pH-driven effects is essential for designing catalysts that operate efficiently across diverse electrochemical environments, ultimately contributing to the development of sustainable energy technologies.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"42 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta06105a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of electrolyte pH on electrocatalytic reactions has long been recognized, yet its underlying mechanisms remain a subject of active debate. This perspective explores how pH influences reaction activity and mechanisms at the computationally affordable atomic scale. Traditional interpretations attribute pH effects to changes described by the computational hydrogen electrode (CHE) model and the Nernst equation. However, recent advances have uncovered more complex interfacial interactions involving electric fields, including dipole moments (μ), polarizability (α), and the potential of zero charge (PZC). We summarize recent progress on how pH influences surface states and reaction mechanisms across various typical electrocatalytic processes, including the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrate reduction reaction (NO3RR). By integrating experimental observations with theoretical models and computational simulations, researchers are beginning to unravel the multifaceted role of pH in electrocatalysis. Furthermore, several key theoretical frameworks have been developed to date to predict reaction activity and elucidate underlying mechanisms, such as the reversible hydrogen electrode (RHE)-referenced Pourbaix diagram and the pH-dependent microkinetic volcano model. Understanding these pH-driven effects is essential for designing catalysts that operate efficiently across diverse electrochemical environments, ultimately contributing to the development of sustainable energy technologies.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.