{"title":"Precision Polymers: Advances in Synthesis, Structural Engineering, and Functional Optimization","authors":"Zhanhui Gan, Jinming Liu, Zhuoqi Xu, Shuai Jia, Xue-Hui Dong","doi":"10.1016/j.progpolymsci.2025.102030","DOIUrl":null,"url":null,"abstract":"Most synthetic polymers are mixtures of homologous chains that vary in chain length, sequence, and architecture. This inherent heterogeneity blurs fundamental structure-property correlations and compromises experimental resolution, reliability, and reproducibility. Although modern polymerization techniques have achieved remarkable control over molecular parameters, absolute structural uniformity across multi-length scales remains unattainable. Recent progress in iterative synthesis and high-resolution chromatography has facilitated the creation of precision polymers—chains of uniform length, exact sequence, and programmable architecture. This review summarizes recent advances that confer such structural fidelity, focusing on iterative synthetic strategies and chromatographic separations. We further illustrate how these precisely defined molecular parameters translate into quantitatively predictable thermodynamic and kinetic behaviors, exemplified by crystallization and self-assembly in bulk and solution. Emerging applications in electronic information, biomedical engineering, and organic optoelectronics are also outlined. We conclude by assessing the remaining challenges and opportunities presented by the advent of AI-guided design and automation.","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"94 1","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.progpolymsci.2025.102030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Most synthetic polymers are mixtures of homologous chains that vary in chain length, sequence, and architecture. This inherent heterogeneity blurs fundamental structure-property correlations and compromises experimental resolution, reliability, and reproducibility. Although modern polymerization techniques have achieved remarkable control over molecular parameters, absolute structural uniformity across multi-length scales remains unattainable. Recent progress in iterative synthesis and high-resolution chromatography has facilitated the creation of precision polymers—chains of uniform length, exact sequence, and programmable architecture. This review summarizes recent advances that confer such structural fidelity, focusing on iterative synthetic strategies and chromatographic separations. We further illustrate how these precisely defined molecular parameters translate into quantitatively predictable thermodynamic and kinetic behaviors, exemplified by crystallization and self-assembly in bulk and solution. Emerging applications in electronic information, biomedical engineering, and organic optoelectronics are also outlined. We conclude by assessing the remaining challenges and opportunities presented by the advent of AI-guided design and automation.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.