Constructing MOF-on-MOF heterojunction on hematite photoanode for efficient photogenerated carrier transport

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Yuhan Bai, Xiu-Shuang Xing, Mengshuo Yin, Wenting Zhang, Shaomei Wang, You-Juan Zhang, Zhongyuan Zhou, Jimin Du
{"title":"Constructing MOF-on-MOF heterojunction on hematite photoanode for efficient photogenerated carrier transport","authors":"Yuhan Bai, Xiu-Shuang Xing, Mengshuo Yin, Wenting Zhang, Shaomei Wang, You-Juan Zhang, Zhongyuan Zhou, Jimin Du","doi":"10.1039/d5dt01814e","DOIUrl":null,"url":null,"abstract":"The effective construction of surface catalyst and heterojunction can accelerate photogenerated carrier separation and transfer to further improve photoelectrochemical water splitting (PEC-WS) performance. Integration of two or more metal-organic frameworks (MOFs) as surface overlayers onto photoelectrode materials can build a nanoscale MOF-on-MOF heterojunction to drive the separation and transfer of photogenerated electron-hole pairs. In this work, MIL-96 and UiO-66 MOFs are sequentially loaded onto α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> photoanode by a strong interaction to form an effective MOF-on-MOF heterojunction, which exhibits excellent PEC catalytic activity and stability. The α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/MIL-96/UiO-66 photoanode exhibits a 125% enhancement of photocurrent density (2.25 mA/cm<small><sup>2</sup></small>) at 1.23 V<small><sub>RHE</sub></small>. The coexistence of Fe<small><sup>3+</sup></small>/Fe<small><sup>2+</sup></small> and O<small><sub>V</sub></small> can enhance the electric conductivity and reduce charge recombination rate of α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> photoanode. The formation of Fe-O/Fe and weak Fe-Al(MIL-96) and Fe-Zr(UiO-66) coordination facilitates photogenerated electron-hole transport between α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> photoanode and MIL-96/UiO-66 overlayer. Furthermore, the constructed bimetallic MIL-96/UiO-66 heterojunction synergistically provides more active sites, and promotes photogenerated carrier separation and transfer, finally effectively reducing the reaction kinetics of water oxidation and enhancing the PEC-WS performance. This work provides a new modifying route to develop the high-efficiency photoelectrode materials with outstanding PEC-WS performance.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"91 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt01814e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The effective construction of surface catalyst and heterojunction can accelerate photogenerated carrier separation and transfer to further improve photoelectrochemical water splitting (PEC-WS) performance. Integration of two or more metal-organic frameworks (MOFs) as surface overlayers onto photoelectrode materials can build a nanoscale MOF-on-MOF heterojunction to drive the separation and transfer of photogenerated electron-hole pairs. In this work, MIL-96 and UiO-66 MOFs are sequentially loaded onto α-Fe2O3 photoanode by a strong interaction to form an effective MOF-on-MOF heterojunction, which exhibits excellent PEC catalytic activity and stability. The α-Fe2O3/MIL-96/UiO-66 photoanode exhibits a 125% enhancement of photocurrent density (2.25 mA/cm2) at 1.23 VRHE. The coexistence of Fe3+/Fe2+ and OV can enhance the electric conductivity and reduce charge recombination rate of α-Fe2O3 photoanode. The formation of Fe-O/Fe and weak Fe-Al(MIL-96) and Fe-Zr(UiO-66) coordination facilitates photogenerated electron-hole transport between α-Fe2O3 photoanode and MIL-96/UiO-66 overlayer. Furthermore, the constructed bimetallic MIL-96/UiO-66 heterojunction synergistically provides more active sites, and promotes photogenerated carrier separation and transfer, finally effectively reducing the reaction kinetics of water oxidation and enhancing the PEC-WS performance. This work provides a new modifying route to develop the high-efficiency photoelectrode materials with outstanding PEC-WS performance.
在赤铁矿光阳极上构建MOF-on-MOF异质结,实现高效光生载流子输运
表面催化剂和异质结的有效构建可以加速光生载流子的分离和转移,进一步提高光电化学水分解(PEC-WS)性能。将两个或多个金属有机框架(mof)作为表面覆盖层集成到光电极材料上,可以构建纳米级MOF-on-MOF异质结,以驱动光生电子-空穴对的分离和转移。在这项工作中,MIL-96和UiO-66 mof通过强相互作用依次加载到α-Fe2O3光阳极上,形成有效的MOF-on-MOF异质结,表现出优异的PEC催化活性和稳定性。α-Fe2O3/MIL-96/UiO-66光阳极在1.23 VRHE下光电流密度提高125% (2.25 mA/cm2)。Fe3+/Fe2+和OV的共存可以提高α-Fe2O3光阳极的电导率,降低电荷复合率。Fe- o /Fe和弱Fe- al (MIL-96)和Fe- zr (UiO-66)配位的形成促进了α-Fe2O3光阳极与MIL-96/UiO-66层之间的光生电子空穴传递。此外,构建的双金属MIL-96/UiO-66异质结协同提供更多活性位点,促进光生载流子分离和转移,最终有效降低水氧化反应动力学,提高PEC-WS性能。本工作为开发具有优异的PEC-WS性能的高效光电极材料提供了一条新的改性途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信