{"title":"Structural insights into IL-31 signaling inhibition by a neutralizing antibody","authors":"Tianling Guo, Yuxin Zheng, Zheng Fan, Ping Liu, Yan Chai, Xiaoping Liao, Caili Zhang, Xuefei Pang, Delin Li, Feng Gao, Haixia Xiao","doi":"10.1016/j.str.2025.09.002","DOIUrl":null,"url":null,"abstract":"Interleukin-31 (IL-31) signals through the IL-31 receptor alpha (IL-31RA) and oncostatin M receptor beta (OSMRβ) heterodimer, mediating pruritus, dermatitis, inflammatory responses, neuroimmune interactions, and certain cancers. Here, we present the crystal structure of canine IL-31 (cIL-31) in complex with a neutralizing caninized monoclonal antibody (2D10-2). This antibody competitively inhibited cIL-31 binding to canine OSMRβ (cOSMRβ) but not to canine IL-31RA (cIL-31RA). Moreover, it effectively blocked cIL-31-induced STAT5 phosphorylation <em>in vitro</em> and alleviated cIL-31-induced pruritus in beagle dogs. Structural analysis identified key antibody-binding residues in α-helical A, α-helical D, and the AB loop of cIL-31. Systematic mutagenesis based on the complex structure further defined the conformational epitopes of cIL-31 recognized by cOSMRβ. In summary, this study reports the IL-31 structure, revealing a four-α-helical bundle cytokine, and elucidates 2D10-2’s neutralizing mechanism by targeting the cIL-31-cOSMRβ interaction. These findings advance our understanding of IL-31 and offer insights for developing IL-31-targeted therapeutics.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"17 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.09.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin-31 (IL-31) signals through the IL-31 receptor alpha (IL-31RA) and oncostatin M receptor beta (OSMRβ) heterodimer, mediating pruritus, dermatitis, inflammatory responses, neuroimmune interactions, and certain cancers. Here, we present the crystal structure of canine IL-31 (cIL-31) in complex with a neutralizing caninized monoclonal antibody (2D10-2). This antibody competitively inhibited cIL-31 binding to canine OSMRβ (cOSMRβ) but not to canine IL-31RA (cIL-31RA). Moreover, it effectively blocked cIL-31-induced STAT5 phosphorylation in vitro and alleviated cIL-31-induced pruritus in beagle dogs. Structural analysis identified key antibody-binding residues in α-helical A, α-helical D, and the AB loop of cIL-31. Systematic mutagenesis based on the complex structure further defined the conformational epitopes of cIL-31 recognized by cOSMRβ. In summary, this study reports the IL-31 structure, revealing a four-α-helical bundle cytokine, and elucidates 2D10-2’s neutralizing mechanism by targeting the cIL-31-cOSMRβ interaction. These findings advance our understanding of IL-31 and offer insights for developing IL-31-targeted therapeutics.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.