A Scalable Quadratic Nonlinear Silicon Photonics Platform With Printable Entangled Photon‐Pair Sources

IF 10 1区 物理与天体物理 Q1 OPTICS
Tom Vandekerckhove, Jasper De Witte, Lisa De Jaeger, Ewoud Vissers, Sofie Janssen, Peter Verheyen, Neha Singh, Dieter Bode, Martin Davi, Filippo Ferraro, Philippe Absil, Sadhishkumar Balakrishnan, Joris Van Campenhout, Dries Van Thourhout, Günther Roelkens, Stéphane Clemmen, Bart Kuyken
{"title":"A Scalable Quadratic Nonlinear Silicon Photonics Platform With Printable Entangled Photon‐Pair Sources","authors":"Tom Vandekerckhove, Jasper De Witte, Lisa De Jaeger, Ewoud Vissers, Sofie Janssen, Peter Verheyen, Neha Singh, Dieter Bode, Martin Davi, Filippo Ferraro, Philippe Absil, Sadhishkumar Balakrishnan, Joris Van Campenhout, Dries Van Thourhout, Günther Roelkens, Stéphane Clemmen, Bart Kuyken","doi":"10.1002/lpor.202501357","DOIUrl":null,"url":null,"abstract":"The integration of second‐order optical nonlinearities into scalable photonic platforms remains a key challenge due to their large sensitivity to fabrication variations. Here, a scalable quadratic nonlinear platform is presented that harnesses the maturity and scalability of existing CMOS processes by heterogeneously integrating periodically poled lithium niobate (PPLN) onto a silicon photonics platform. A generic PPLN design enables frequency conversion on two distinct waveguide geometries with efficiencies comparable to reported lithium niobate on insulator (LNOI) rib waveguides. Reproducible phase‐matching is achieved across the full radius of a commercial 200 mm silicon photonics wafer, leveraging superior CMOS fabrication tolerances. Furthermore, a tuning mechanism is introduced for both blue‐ and red‐shifting of the operating wavelength, fully compensating fabrication‐induced offsets. This enables deterministic phase‐matching over an entire wafer and yields a strategy for wafer‐scale phase‐matched quadratic nonlinearities. Finally, printable photon‐pair sources are realized via spontaneous parametric down‐conversion (SPDC), highlighting the platform's potential for large‐scale quantum optical circuits. These results pave the way for wafer‐scale integration of second‐order optical nonlinearities in large photonic systems.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"17 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501357","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of second‐order optical nonlinearities into scalable photonic platforms remains a key challenge due to their large sensitivity to fabrication variations. Here, a scalable quadratic nonlinear platform is presented that harnesses the maturity and scalability of existing CMOS processes by heterogeneously integrating periodically poled lithium niobate (PPLN) onto a silicon photonics platform. A generic PPLN design enables frequency conversion on two distinct waveguide geometries with efficiencies comparable to reported lithium niobate on insulator (LNOI) rib waveguides. Reproducible phase‐matching is achieved across the full radius of a commercial 200 mm silicon photonics wafer, leveraging superior CMOS fabrication tolerances. Furthermore, a tuning mechanism is introduced for both blue‐ and red‐shifting of the operating wavelength, fully compensating fabrication‐induced offsets. This enables deterministic phase‐matching over an entire wafer and yields a strategy for wafer‐scale phase‐matched quadratic nonlinearities. Finally, printable photon‐pair sources are realized via spontaneous parametric down‐conversion (SPDC), highlighting the platform's potential for large‐scale quantum optical circuits. These results pave the way for wafer‐scale integration of second‐order optical nonlinearities in large photonic systems.
具有可打印纠缠光子对源的可扩展二次非线性硅光子平台
将二阶光学非线性集成到可扩展光子平台中仍然是一个关键的挑战,因为它们对制造变化非常敏感。本文提出了一个可扩展的二次非线性平台,利用现有CMOS工艺的成熟度和可扩展性,将周期性极化铌酸锂(PPLN)异质集成到硅光子平台上。通用的PPLN设计可以在两种不同的波导几何形状上进行频率转换,其效率与报道的绝缘体上铌酸锂(LNOI)肋波导相当。利用优越的CMOS制造公差,在商用200mm硅光子学晶圆的整个半径上实现了可重复的相位匹配。此外,还引入了一种调谐机制,用于工作波长的蓝移和红移,完全补偿制造引起的偏移。这实现了整个晶圆的确定性相位匹配,并产生了晶圆尺度相位匹配的二次非线性策略。最后,通过自发参数下转换(SPDC)实现了可打印的光子对源,突出了该平台在大规模量子光学电路中的潜力。这些结果为大规模光子系统中二阶光学非线性的晶圆级集成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信