{"title":"Tuning polariton vortices in an asymmetric ring potential","authors":"Qiang Ai, Xuekai Ma, Franziska Barkhausen, Xiaokun Zhai, Chunzi Xing, Xinmiao Yang, Peilin Wang, Tianyu Liu, Yong Zhang, Yazhou Gu, Peigang Li, Zhitong Li, Zacharias Hatzopoulos, Pavlos G. Savvidis, Stefan Schumacher, Tingge Gao","doi":"10.1063/5.0287076","DOIUrl":null,"url":null,"abstract":"Exciton polariton condensates are macroscopic coherent states in which topological excitations can be observed. In this work, we observe the excitation of the vortices and realize tuning the topological charge by manipulating the pumping configurations. Using a digital micromirror device, we constructed an annular pumping pattern where the inner and outer rings can be easily tuned. Both the number and the topological charge of the vortices can be changed by slightly tuning the inner ring position against the outer ring. The experimental results can be reproduced in theory by the Gross–Pitaevskii equation. Our work offers to generate and manipulate vortices in exciton polariton condensates using a straightforward optical method.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"73 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0287076","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Exciton polariton condensates are macroscopic coherent states in which topological excitations can be observed. In this work, we observe the excitation of the vortices and realize tuning the topological charge by manipulating the pumping configurations. Using a digital micromirror device, we constructed an annular pumping pattern where the inner and outer rings can be easily tuned. Both the number and the topological charge of the vortices can be changed by slightly tuning the inner ring position against the outer ring. The experimental results can be reproduced in theory by the Gross–Pitaevskii equation. Our work offers to generate and manipulate vortices in exciton polariton condensates using a straightforward optical method.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.